Evaluating the pathogenicity of a variant is challenging given the plethora of types of genetic evidence that laboratories consider. Deciding how to weigh each type of evidence is difficult, and standards have been needed. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published guidelines for the assessment of variants in genes associated with Mendelian diseases. Nine molecular diagnostic laboratories involved in the Clinical Sequencing Exploratory Research (CSER) consortium piloted these guidelines on 99 variants spanning all categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign). Nine variants were distributed to all laboratories, and the remaining 90 were evaluated by three laboratories. The laboratories classified each variant by using both the laboratory's own method and the ACMG-AMP criteria. The agreement between the two methods used within laboratories was high (K-alpha = 0.91) with 79% concordance. However, there was only 34% concordance for either classification system across laboratories. After consensus discussions and detailed review of the ACMG-AMP criteria, concordance increased to 71%. Causes of initial discordance in ACMG-AMP classifications were identified, and recommendations on clarification and increased specification of the ACMG-AMP criteria were made. In summary, although an initial pilot of the ACMG-AMP guidelines did not lead to increased concordance in variant interpretation, comparing variant interpretations to identify differences and having a common framework to facilitate resolution of those differences were beneficial for improving agreement, allowing iterative movement toward increased reporting consistency for variants in genes associated with monogenic disease.
On page 1072 in the originally published version of this article, PS2 was a typo and should have read PS3 in the following sentence: ''The other most common examples of modified strength included the following: PVS1 (a predicted null variant in a gene where LOF is a known mechanism of disease) was downgraded from very strong four times, PS2 (well-established functional studies show a deleterious effect) was downgraded three times, and BS1 (MAF is too high for the disorder) was downgraded three times.'' The error has been corrected online, and the authors apologize for the oversight.
Mammalian cells require Nonhomologous end joining (NHEJ) for efficient repair of chromosomal DNA double-strand breaks1. A key feature of biological sources of strand breaks is associated nucleotide damage, including base loss (abasic or AP sites)2. At single strand breaks, 5' terminal abasic sites are excised by pol β's 5'dRP lyase activity3,4,5,6: we show here in vitro and in cells that accurate and efficient repair by NHEJ of double-strand breaks with such damage similarly requires 5'dRP/AP lyase activity (Figure 1a). Classically defined NHEJ is moreover uniquely effective at coupling this end-cleaning step to joining in cells, helping distinguish this pathway from otherwise robust alternate NHEJ pathways. Surprisingly, the NHEJ factor Ku can be identified as an effective 5'dRP/AP lyase. Similar to other lyases7, Ku nicks DNA 3' of an abasic site by a mechanism involving a Schiff base covalent intermediate with the abasic site. We demonstrate using cell extracts that Ku is essential for efficient removal of AP sites near double-strand breaks and, consistent with this result, joining of such breaks is specifically reduced in cells complemented with a lyase-attenuated Ku mutant. Ku had previously been presumed only to recognize ends and recruit other factors that processed ends; our data supports an unexpected direct role for Ku in end processing steps as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.