Self-reported social mixing patterns are commonly used in mathematical models of infectious diseases. It is particularly important to quantify patterns for school-age children given their disproportionate role in transmission, but it remains unclear how the structure of such social interactions changes over time. By integrating data collection into a public engagement programme, we examined self-reported contact networks in year 7 groups in four UK secondary schools. We collected data from 460 unique participants across four rounds of data collection conducted between January and June 2015, with 7,315 identifiable contacts reported in total. Although individual-level contacts varied over the study period, we were able to obtain out-of-sample accuracies of more than 90% and F-scores of 0.49–0.84 when predicting the presence or absence of social contacts between specific individuals across rounds of data collection. Network properties such as clustering and number of communities were broadly consistent within schools between survey rounds, but varied significantly between schools. Networks were assortative according to gender, and to a lesser extent school class, with the estimated clustering coefficient larger among males in all surveyed co-educational schools. Our results demonstrate that it is feasible to collect longitudinal self-reported social contact data from school children and that key properties of these data are consistent between rounds of data collection.
Self-reported social mixing patterns are commonly used in mathematical models of infectious diseases. It is particularly important to quantify patterns for school-age children given their disproportionate role in transmission, but it remains unclear how the structure of such social interactions changes over time. By integrating data collection into a public engagement programme, we examined self-reported contact networks in year 7 groups in four UK secondary schools. We collected data from 460 unique participants across four rounds of data collection conducted between January and June 2015, with 7,315 identifiable contacts reported in total. Although individual-level contacts varied over the study period, we were able to obtain out-of-sample accuracies of more than 90% and F-scores of 0.49-0.84 when predicting the presence or absence of social contacts between specific individuals across rounds of data collection. Network properties such as clustering and number of communities were broadly consistent within schools between survey rounds, but varied significantly between schools. Networks were assortative according to gender, and to a lesser extent school class, with the estimated clustering coefficient larger among males in all surveyed co-educational schools. Our results demonstrate that it is feasible to collect longitudinal self-reported social contact data from school children and that key properties of these data are consistent between rounds of data collection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.