Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies 1,2 and solid cancers [3][4][5][6] . If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignantmelanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5 + tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial humanto-mouse xenotransplantation experiments, ABCB5 + melanoma cells possess greater tumorigenic capacity than ABCB5 − bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5 + sub-populations for selfrenewal and differentiation, because ABCB5 + cancer cells generate both ABCB5 + and ABCB5 − progeny, whereas ABCB5 − tumour populations give rise, at lower rates, exclusively to ABCB5 − cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also
Enhanced drug efflux mediated by ABCB1 P-glycoprotein and related ATP-binding cassette transporters is one of several mechanisms of multidrug resistance thought to impair chemotherapeutic success in human cancers. In malignant melanoma, its potential contribution to chemoresistance is uncertain. Here, we show that ABCB5, which functions as a determinant of membrane potential and regulator of cell fusion in physiologic skin progenitor cells, is expressed in clinical malignant melanoma tumors and preferentially marks a subset of hyperpolarized, CD133+ stem cell phenotypeexpressing tumor cells in malignant melanoma cultures and clinical melanomas. We found that ABCB5 blockade significantly reversed resistance of G3361 melanoma cells to doxorubicin, an agent to which clinical melanomas have been found refractory, resulting in a 43% reduction in the LD 50 from 4 to 2.3 Mmol/L doxorubicin (P < 0.05). Our results identified ABCB5-mediated doxorubicin efflux transport as the underlying mechanism of resistance, because ABCB5 blockade significantly enhanced intracellular drug accumulation. Consistent with this novel ABCB5 function and mechanism in doxorubicin resistance, gene expression levels of the transporter across a panel of human cancer cell lines used by the National Cancer Institute for drug screening correlated significantly with tumor resistance to doxorubicin (r = 0.44; P = 0.016). Our results identify ABCB5 as a novel drug transporter and chemoresistance mediator in human malignant melanoma. Moreover, our findings show that ABCB5 is a novel molecular marker for a distinct subset of chemoresistant, stem cell phenotype-expressing tumor cells among melanoma bulk populations and indicate that these chemoresistant cells can be specifically targeted via ABCB5 to enhance cytotoxic efficacy. (Cancer Res 2005; 65(10): 4320-33)
Cancer stem cells (CSCs) are a subpopulation of tumor cells that selectively possess tumor initiation and self-renewal capacity and the ability to give rise to bulk populations of nontumorigenic cancer cell progeny through differentiation. As we discuss here, they have been prospectively identified in several human malignancies, and their relative abundance in clinical cancer specimens has been correlated with malignant disease progression in human patients. Furthermore, recent findings suggest that clinical cancer progression driven by CSCs may contribute to the failure of existing therapies to consistently eradicate malignant tumors. Therefore, CSC-directed therapeutic approaches might represent translationally relevant strategies to improve clinical cancer therapy, in particular for those malignancies that are currently refractory to conventional anticancer agents directed predominantly at tumor bulk populations.
Highly immunogenic cancers such as malignant melanoma are capable of inexorable tumor growth despite the presence of antitumor immunity. Thus, only a restricted minority of tumorigenic malignant cells may possess the phenotypic and functional characteristics needed to modulate tumor-directed immune activation. Here we provide evidence supporting this hypothesis. Tumorigenic ABCB5 + malignant melanoma initiating cells
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.