In this paper, a three-dimensional particlebased technique utilizing the discrete element method (DEM) is proposed to study wave propagation in a dry granular soil column. Computational simulations were conducted to investigate the soil response to sinusoidal motions with different amplitudes and frequencies. Three types of soil deposits with different void ratios were employed in these simulations. Different boundary conditions at the base such as rigid bedrock, elastic bedrock, and infinite medium were also considered. Analysis is done in time domain while taking into account the effects of soil nonlinear behavior. The computational approach is able to capture a number of essential characteristics of wave propagation including motion amplification and resonance. Dynamic soil properties were then extracted from conducted simulations and used to predict the response of the soil using the widely used equivalent linear method program SHAKE and compare its predictions to DEM results. Generally, there was a good agreement between SHAKE and DEM results except when the exciting frequency was close to the resonance frequency of the deposit where significant discrepancy in computed shear strains between SHAKE predictions and DEM results was observed.
SUMMARYA novel three-dimensional particle-based technique utilizing the discrete element method is proposed to analyze the seismic response of soil-foundation-structure systems. The proposed approach is employed to investigate the response of a single-degree-of-freedom structure on a square spread footing founded on a dry granular deposit. The soil is idealized as a collection of spherical particles using discrete element method. The spread footing is modeled as a rigid block composed of clumped particles, and its motion is described by the resultant forces and moments acting upon it. The structure is modeled as a column made of particles that are either clumped to idealize a rigid structure or bonded to simulate a flexible structure of prescribed stiffness. Analysis is done in a fully coupled scheme in time domain while taking into account the effects of soil nonlinear behavior, the possible separation between foundation base and soil caused by rocking, the possible sliding of the footing, and the dynamic soil-foundation interaction as well as the dynamic characteristics of the superstructure. High fidelity computational simulations comprising about half a million particles were conducted to examine the ability of the proposed technique to model the response of soil-foundation-structure systems. The computational approach is able to capture essential dynamic response patterns. The cyclic moment-rotation relationships at the base center point of the footing showed degradation of rotational stiffness by increasing the level of strain. Permanent deformations under the foundation continued to accumulate with the increase in number of loading cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.