Much of the mechanism by which Wnt signaling drives proliferation during oncogenesis is attributed to its regulation of the cell cycle. Here, we show how Wnt/b-catenin signaling directs another hallmark of tumorigenesis, namely Warburg metabolism. Using biochemical assays and fluorescence lifetime imaging microscopy (FLIM) to probe metabolism in vitro and in living tumors, we observe that interference with Wnt signaling in colon cancer cells reduces glycolytic metabolism and results in small, poorly perfused tumors. We identify pyruvate dehydrogenase kinase 1 (PDK1) as an important direct target within a larger gene program for metabolism. PDK1 inhibits pyruvate flux to mitochondrial respiration and a rescue of its expression in Wnt-inhibited cancer cells rescues glycolysis as well as vessel growth in the tumor microenvironment. Thus, we identify an important mechanism by which Wntdriven Warburg metabolism directs the use of glucose for cancer cell proliferation and links it to vessel delivery of oxygen and nutrients.
Wnt regulation of gene expression requires binding of LEF/T-cell factor (LEF/TCF) transcription factors toWnt response elements (WREs) and recruitment of the activator -catenin. There are significant differences in the abilities of LEF/TCF family members to regulate Wnt target genes. For example, alternatively spliced isoforms of TCF-1 and TCF-4 with a C-terminal "E" tail are uniquely potent in their activation of LEF1 and CDX1. Here we report that the mechanism responsible for this unique activity is an auxiliary 30-amino-acid DNA interaction motif referred to here as the "cysteine clamp" (or C-clamp). The C-clamp contains invariant cysteine, aromatic, and basic residues, and surface plasmon resonance (SPR) studies with recombinant C-clamp protein showed that it binds double-stranded DNA but not single-stranded DNA or RNA (equilibrium dissociation constant ؍ 16 nM). CASTing (Cyclic Amplification and Selection of Targets) experiments were used to test whether this motif influences WRE recognition. Full-length LEF-1, TCF-1E, and TCF-1E with a mutated C-clamp all bind nearly identical WREs (TYYCTTTGATSTT), showing that the C-clamp does not alter WRE specificity. However, a GC element downstream of the WRE (RCCG) is enriched in wild-type TCF-1E binding sites but not in mutant TCF-1E binding sites. We conclude that the C-clamp is a sequencespecific DNA binding motif. C-clamp mutations destroy the ability of -catenin to regulate the LEF1 promoter, and they severely impair the ability of TCF-1 to regulate growth in colon cancer cells. Thus, E-tail isoforms of TCFs utilize two DNA binding activities to access a subset of Wnt targets important for cell growth.
The lymphoid enhancer factor 1/T cell factor (LEF/TCF) family of transcription factors are downstream effectors of the WNT signaling pathway, which drives colon tumorigenesis. LEF/TCFs have a DNA sequence-specific high-mobility group (HMG) box that binds Wnt response elements (WREs). The "E tail" isoforms of TCFs are alternatively spliced to include a second DNA binding domain called the C-clamp. We show that induction of a dominant negative C-clamp version of TCF1 (dnTCF1E) induces p21 expression and a stall in the growth of DLD1 colon cancer cells. Induction of a C-clamp mutant did not efficiently induce p21, nor did it stall cell growth. Microarray analysis revealed that induction of p21 by wild-type dnTCF1E (dnTCF1E WT ) correlated with a decrease in expression of multiple p21 suppressors that act at multiple levels from transcription (SP5, YAP1, and RUNX1), RNA stability (MSI2), and protein stability (CUL4A). We show that the C-clamp is a sequence-specific DNA binding domain that can make contacts with 5=-RCCG-3= elements upstream or downstream of WREs. The C-clamp-RCCG interaction was critical for TCF1E-mediated transcriptional control of p21-connected target gene promoters. Our results indicate that a rapid-response WNT/p21 circuit is driven by C-clamp target gene selection.
The nuclear receptor hepatocyte nuclear factor 4␣ (HNF4␣) is tumor suppressive in the liver but amplified in colon cancer, suggesting that it also might be oncogenic. To investigate whether this discrepancy is due to different HNF4␣ isoforms derived from its two promoters (P1 and P2), we generated Tet-On-inducible human colon cancer ( Thus, the HNF4␣ isoforms play distinct roles in colon cancer, which could be due to differential interactions with the Wnt/-catenin/TCF4 and AP-1 pathways.
LEF/TCFs direct the final step in Wnt/β-catenin signalling by recruiting β-catenin to genes for activation of transcription. Ancient, non-vertebrate TCFs contain two DNA binding domains, a High Mobility Group box for recognition of the Wnt Response Element (WRE; 5′-CTTTGWWS-3′) and the C-clamp domain for recognition of the GC-rich Helper motif (5′-RCCGCC-3′). Two vertebrate TCFs (TCF-1/TCF7 and TCF-4/TCF7L2) use the C-clamp as an alternatively spliced domain to regulate cell-cycle progression, but how the C-clamp influences TCF binding and activity genome-wide is not known. Here, we used a doxycycline inducible system with ChIP-seq to assess how the C-clamp influences human TCF1 binding genome-wide. Metabolic pulse-labeling of nascent RNA with 4′Thiouridine was used with RNA-seq to connect binding to the Wnt transcriptome. We find that the C-clamp enables targeting to a greater number of gene loci for stronger occupancy and transcription regulation. The C-clamp uses Helper sites concurrently with WREs for gene targeting, but it also targets TCF1 to sites that do not have readily identifiable canonical WREs. The coupled ChIP-seq/4′Thiouridine-seq analysis identified new Wnt target genes, including additional regulators of cell proliferation. Thus, C-clamp containing isoforms of TCFs are potent transcriptional regulators with an expanded transcriptome directed by C-clamp-Helper site interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.