Hydrological extremes experience an increase in some regions and a decrease in other zones. The objectives of the present work were (i) to introduce Class A pan evaporation data and virtual temperature-based potential evapotranspiration (PET v hereafter) into the Standardized Precipitation–Evapotranspiration Index (SPEIm hereafter) computation and (ii) to describe small and large fluctuations of SPI and SPEIm through multifractal detrended fluctuation (MF-DFA) and multifractal detrended cross-correlation (MF-DCCA) analyses. We used 40 years data (1974–2013) of monthly rainfall (P), mean, minimum and maximum air temperature, pan evaporation (E), relative humidity (RH) and relative sun brightness (RSB). Meteorological variables were collected from Puyo meteorological station, Pastaza Province, Ecuador. SPI time series for 1 and 6 months timescales were determined following two approaches. We computed SPI values using precipitation as the only input variable. Additionally, we incorporated pan evaporation and virtual temperature-based potential evapotranspiration into the standard SPEI computation (SPEIm). The SPEIm revealed some differences as compared with the classical SPI methodology. Five out of fifteen Asymmetry Index (AI) values were positive (0.095 ≤ AI ≤ 0.419).This indicates the relevance of high fluctuations at different time scales. Joint multifractal spectra between SPI (1,6)/SPEIm(1,6) versus RH and RSB rendered negative AI values which suggests the importance of low fluctuations at shorter time scales. The DCCA cross-correlation coefficient allows one to identify those time scales where SPI and SPEIm are influenced by other meteorological variables. Long-term correlation and sub-Gaussian behaviour of meteorological variables (apart from air temperature) are the main causes of multifractal structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.