Described herein is the synthesis, structure, and monoesterase and diesterase activities of a new mononuclear)-4-methyl-6-formylphenol) in the hydrolysis of 2,4-bis(dinitrophenyl)phosphate (2,4-BDNPP). When covalently linked to 3-aminopropyl-functionalized silica, 1 undergoes disproportionation to form a dinuclear species (APS-1), whose catalytic efficiency is increased when compared to the homogeneous reaction due to second coordination sphere effects which increase the substrate to complex association constant. The anchored catalyst APS-1 can be recovered and reused for subsequent hydrolysis reactions (five times) with only a slight loss in activity. In the presence of DNA, we suggest that 1 is also converted into the dinuclear active species as observed with APS-1, and both were shown to be efficient in DNA cleavage.
Polyhydroxyalkanoates (PHAs) are a class of biopolymers with numerous applications, but the high cost of production has prevented their use. To reduce this cost, there is a prospect for strains with a high PHA production and the ability to grow in low-cost by-products. In this context, the objective of this work was to evaluate marine bacteria capable of producing PHA. Using Nile red, 30 organisms among 155 were identified as PHA producers in the medium containing starch, and 27, 33, 22 and 10 strains were found to be positive in media supplemented with carboxymethyl cellulose, glycerol, glucose and Tween 80, respectively. Among the organisms studied, two isolates, LAMA 677 and LAMA 685, showed strong potential to produce PHA with the use of glycerol as the carbon source, and were selected for further studies. In the experiment used to characterize the growth kinetics, LAMA 677 presented a higher maximum specific growth rate (µmax = 0.087 h−1) than LAMA 685 (µmax = 0.049 h−1). LAMA 677 also reached a D-3-hydroxybutyrate (P(3HB)) content of 78.63% (dry biomass), which was 3.5 times higher than that of LAMA 685. In the assay of the production of P(3HB) from low-cost substrates (seawater and biodiesel waste glycerol), LAMA 677 reached a polymer content of 31.7%, while LAMA 685 reached 53.6%. Therefore, it is possible to conclude that the selected marine strains have the potential to produce PHA, and seawater and waste glycerol may be alternative substrates for the production of this polymer.
Two new complexes of Ru(II) with mixed ligands were prepared: [Ru(bpy)2smp](PF6) (1) and [Ru(phen)2smp](PF6) (2), in which smp = sulfamethoxypyridazine; bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline. The complexes have been characterized by elemental and conductivity analyses; infrared, NMR, and electrospray ionization mass spectroscopies; and X-ray diffraction of single crystal. Structural analyses reveal a distorted octahedral geometry around Ru(II) that is bound to two bpy (in 1) or two phen (in 2) via their two heterocyclic nitrogens and to two nitrogen atoms from sulfamethoxypyridazine—one of the methoxypyridazine ring and the sulfonamidic nitrogen, which is deprotonated. Both complexes inhibit the growth of chronic myelogenous leukemia cells. The interaction of the complexes with bovine serum albumin and DNA is described. DNA footprinting using an oligonucleotide as substrate showed the complexes’ preference for thymine base rich sites. It is worth notifying that the complexes interact with the Src homology SH3 domain of the Abl tyrosine kinase protein. Abl protein is involved in signal transduction and implicated in the development of chronic myelogenous leukemia. Nuclear magnetic resonance (NMR) studies of the interaction of complex 2 with the Abl-SH3 domain showed that the most affected residues were T79, G97, W99, and Y115.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.