Cancer stem cells (CSCs) have been associated with metastasis and therapeutic resistance and can be generated via epithelial mesenchymal transition (EMT). Some studies suggest that the hormone melatonin acts in CSCs and may participate in the inhibition of the EMT. The objectives of this study were to evaluate the formation of mammospheres from the canine and human breast cancer cell lines, CMT-U229 and MCF-7, and the effects of melatonin treatment on the modulation of stem cell and EMT molecular markers: OCT4, E-cadherin, N-cadherin and vimentin, as well as on cell viability and invasiveness of the cells from mammospheres. The CMT-U229 and MCF-7 cell lines were subjected to three-dimensional culture in special medium for stem cells. The phenotype of mammospheres was first evaluated by flow cytometry (CD44+/CD24low/- marking). Cell viability was measured by MTT colorimetric assay and the expression of the proteins OCT4, E-cadherin, N-cadherin and vimentin was evaluated by immunofluorescence and quantified by optical densitometry. The analysis of cell migration and invasion was performed in Boyden Chamber. Flow cytometry proved the stem cell phenotype with CD44+/CD24low/- positive marking for both cell lines. Cell viability of CMT-U229 and MCF-7 cells was reduced after treatment with 1mM melatonin for 24 h (P<0.05). Immunofluorescence staining showed increased E-cadherin expression (P<0.05) and decreased expression of OCT4, N-cadherin and vimentin (P<0.05) in both cell lines after treatment with 1 mM melatonin for 24 hours. Moreover, treatment with melatonin was able to reduce cell migration and invasion in both cell lines when compared to control group (P<0.05). Our results demonstrate that melatonin shows an inhibitory role in the viability and invasiveness of breast cancer mammospheres as well as in modulating the expression of proteins related to EMT in breast CSCs, suggesting its potential anti-metastatic role in canine and human breast cancer cell lines.
Breast cancer progression is composed of multiple steps that are influenced by tumor cell adaptations to survive under acidic conditions in the tumor microenvironment. Regulation of this cell survival behavior is a promising strategy to avoid cancer development. Melatonin is a natural hormone produced and secreted by the pineal gland capable of modulating different biological pathways in cancer. Although the anti-cancer effects of melatonin are currently widespread, its role in the acid tumor microenvironment remains poorly understood. The aim of the present study was to investigate the effect of low pH (6.7) on human breast cancer cell lines MCF-7 and MDA-MB-231, and the effectiveness of melatonin in acute acidosis survival mechanisms. Cell viability was measured by a MTT assay and the protein expression of glucose transporter (GLUT)-1, Ki-67 and caspase-3 was evaluated by immunocytochemical (ICC) analysis following low pH media and melatonin treatment. In both cell lines the viability was decreased after melatonin treatment (1 mM) under acidosis conditions for 24 h. ICC analysis showed a significant increase in GLUT-1 and Ki-67 expression at pH 6.7, and a decrease after treatment with melatonin for 12 and 24 h. The low pH media decreased the expression of caspase-3, which was increased after melatonin treatment for 12 and 24 h. Overall, the results of the present study revealed melatonin treatment increases apoptosis, as indicated by changes in caspase-3, and decreases proliferation, indicated by changes to Ki-67, and GLUT-1 protein expression under acute acidosis conditions in breast cancer cell lines.
Melatonin is a pleiotropic anti-cancer molecule that controls cancer growth by multiple mechanisms. RNA-Seq can potentially evaluate therapeutic response and its use in xenograft tumor models can differentiate the changes that occur specifically in tumor cells or in the tumor microenvironment (TME). Melatonin actions were evaluated in a xenograft model of triple-negative breast cancer. Balb/c nude mice bearing MDA-MB-231 tumors were treated with melatonin or vehicle. RNA-Seq was performed on the Illumina HiSeq. 2500 and data were mapped against human and mouse genomes separately to differentiate species-specific expression. Differentially expressed (DE) genes were identified and Weighted Gene Co-expression Network Analysis (WGCNA) was used to detect clusters of highly co-expressed genes. Melatonin treatment reduced tumor growth (p < 0.01). 57 DE genes were identified in murine cells, which represented the TME, and were mainly involved in immune response. The WGCNA detected co-expressed genes in tumor cells and TME, which were related to the immune system among other biological processes. The upregulation of two genes (Tnfaip8l2 and Il1f6) by melatonin was validated in the TME, these genes play important roles in the immune system. Taken together, the transcriptomic data suggests that melatonin anti-tumor actions occur through modulation of TME in this xenograft tumor model.
Background NF-kB (nuclear factor kappa B) is a transcription factor composed of two subunits, p50 and p65, which plays a key role in the inflammatory process. Melatonin has oncostatic, antiangiogenic and antimetastatic properties, and some recent studies have indicated an inhibitory effect of melatonin on NF-kB in some types of cancer. This work aims to investigate the effects of melatonin treatment on the expression of NF-kB in breast and liver cancer models. Methods The breast cancer xenographic model was performed using female Balb/c nude athymic mice injected with MDA-MB-231 cells. The animals were treated with 40 mg/Kg of melatonin for 21 days. Volume of the tumors was measured with a digital capiler. Hepatocarcinoma model was developed by using the HepG2 cells in vitro, treated with 1 mM melatonin for 24 h. The expression of NF-kB protein was verified by immunohistochemistry and immunocytochemistry and quantified by optical densitometry, in vivo study and in vitro study, respectively. NF-kB gene expression was performed by quantitative RT-PCR. Results The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size (P=0.0022). There was a decrease in NF-kB protein staining (P=0.0027) and gene expression (P=0.0185) in mice treated with melatonin. The opposite results were observed for the hepatocarcinoma model. HepG2 cells treated with melatonin showed an increase in the NF-kB immunostaining when compared to control cells (P=0.0042). Conclusion Our results indicated that treatment with melatonin was able to decrease both gene and protein expressions of NF-kB in breast cancer cells and, conversely, increase the transcription factor protein expression in hepatocarcinoma cells. These data highlighted a double role in the expression of NF-kB, depending on the cell type. Further studies are needed to better elucidate the action of melatonin in NF-kB, since this transcription factor acts on different signaling pathways that are fundamental for carcinogenesis.
The main side effect of cyclosporine A (CsA), a widely used immunosuppressive drug, is nephrotoxicity. Early detection of CsA-induced acute nephrotoxicity is essential for stop or minimize kidney injury, and timely detection of chronic nephrotoxicity is critical for halting the drug and preventing irreversible kidney injury. This study aimed to identify urinary biomarkers for the detection of CsA-induced nephrotoxicity. We allocated salt-depleted rats to receive CsA or vehicle for 7, 14 or 21 days and evaluated renal function and hemodynamics, microalbuminuria, renal macrophage infiltration, tubulointerstitial fibrosis and renal tissue and urinary biomarkers for kidney injury. Kidney injury molecule-1 (KIM-1), tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), fibronectin, neutrophil gelatinase-associated lipocalin (NGAL), TGF-β, osteopontin, and podocin were assessed in urine. TNF-α, IL-6, fibronectin, osteopontin, TGF-β, collagen IV, alpha smooth muscle actin (α -SMA) and vimentin were assessed in renal tissue. CsA caused early functional renal dysfunction and microalbuminuria, followed by macrophage infiltration and late tubulointerstitial fibrosis. Urinary TNF-α, KIM-1 and fibronectin increased in the early phase, and urinary TGF-β and osteopontin increased in the late phase of CsA nephrotoxicity. Urinary biomarkers correlated consistently with renal tissue cytokine expression. In conclusion, early increases in urinary KIM-1, TNF-α, and fibronectin and elevated microalbuminuria indicate acute CsA nephrotoxicity. Late increases in urinary osteopontin and TGF-β indicate chronic CsA nephrotoxicity. These urinary kidney injury biomarkers correlated well with the renal tissue expression of injury markers and with the temporal development of CsA nephrotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.