The indicators of SM quality were the most significant predictors of surgical complications. Classifying muscle quality in terms of low-radiodensity or high-radiodensity area is a promising strategy to understand the impact of SM quality on unfavorable surgical outcomes in cancer patients.
Low‐radiodensity skeletal muscle has been related to the degree of muscle fat infiltration and seems to be associated with worse outcomes. The aim of this study was to summarize the methodologies used to appraise skeletal muscle radiodensity by computed tomography, to describe the terms used in the literature to define muscle radiodensity and to give recommendations for its measurement standardization. An integrative bibliographic review in four databases included studies published until August 2019 in Portuguese, English or Spanish and performed in humans, adults and/or the elderly, of both sex, which investigated skeletal muscle radiodensity through computed tomography (CT) of the region between the third and fifth lumbar vertebrae and evaluated at least two muscular groups. One hundred and seventeen studies were selected. We observed a trend towards selecting all abdominal region muscle. A significant methodological variation in terms of contrast use, selection of skeletal muscle areas, radiodensity ranges delimitation and their cut‐off points, as well as the terminologies used, was also found. The methodological differences detected are probably due to the lack of more precise information about the correlation between skeletal muscle radiodensity by CT and its molecular composition, among others. Therefore, until the gaps are addressed in future studies, authors should avoid arbitrary approaches when reporting skeletal muscle radiodensity, especially when it comes to prognosis inference. Studies using both CT and direct methods of muscle composition evaluation are encouraged, to enable the definition and validation of the best approach to classify fat‐infiltrated muscle tissue, which will favour the nomenclature uniformization.
Classifying the skeletal muscle into sub-ranges of radiodensity have an additional value than using the average muscle attenuation of the overall skeletal muscle area and should be exploited in further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.