Seed osmopriming is a pre-sowing treatment that involves limitation of the seed water imbibition, so that pre-germinative metabolic activities proceed without radicular protrusion. This technique is used for improving germination rate, uniformity of seedling growth and hastening the time to start germination. In Arabidopsis thaliana, seed germination has been associated with the induction of enzymes involved in cell wall modifications, such as expansins. The a-expansins (EXPAs) are involved in cell wall relaxation and extension during seed germination. We used online tools to identify AtEXPA genes with preferential expression during seed germination and RT-qPCR to study the expression of five EXPA genes at different germination stages of non-primed and osmoprimed seeds. In silico promoter analysis of these genes showed that motifs similar to cis-acting elements related to abiotic stress, light and phytohormone responses are the most overrepresented in promoters of these AtEXPA genes, showing that their expression is likely be regulated by intrinsic developmental and environmental signals during Arabidopsis seed germination. The osmopriming conditioning had a decreased time and mean to 50% germination without affecting the percentage of final seed germination. The dried PEG-treated seeds showed noticeable high mRNA levels earlier at the beginning of water imbibition (18 h), showing that transcripts of all five EXPA isoforms were significantly produced during the osmopriming process. The strong up-regulation of these AtEXPA genes, mainly AtEXPA2, were associated with the earlier germination of the osmoprimed seeds, which qualifies them to monitor osmopriming procedures and the advancement of germination.
Molecular tools adapted from bacterial CRISPR (clustered regulatory interspaced short palindromic repeat) adaptive immune systems have been demonstrated in an increasingly wide range of plant species. They have been applied for the induction of targeted mutations in one or more genes as well as for directing the integration of new DNA to specific genomic loci. The construction of molecular tools for multiplexed CRISPR-mediated editing in plants has been facilitated by cloning techniques that allow multiple sequences to be assembled together in a single cloning reaction. Modifications of the canonical Cas9 protein from Streptococcus pyogenes and the use of nucleases from other bacteria have increased the diversity of genomic sequences that can be targeted and allow the delivery of protein cargos such as transcriptional activators and repressors. Furthermore, the direct delivery of protein-RNA complexes to plant cells and tissues has enabled the production of engineered plants without the delivery or genomic integration of foreign DNA. Here, we review toolkits derived from bacterial CRISPR systems for targeted mutagenesis, gene delivery and modulation of gene expression in plants, focusing on their composition and the strategies employed to reprogramme them for the recognition of specific genomic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.