Membrane-type 5-matrix metalloproteinase (MT5-MMP) is a proteinase mainly expressed in the nervous system with emerging roles in brain pathophysiology. The implication of MT5-MMP in Alzheimer’s disease (AD), notably its interplay with the amyloidogenic process, remains elusive. Accordingly, we crossed the genetically engineered 5xFAD mouse model of AD with MT5-MMP-deficient mice and examined the impact of MT5-MMP deficiency in bigenic 5xFAD/MT5-MMP−/− mice. At early stages (4 months) of the pathology, the levels of amyloid beta peptide (Aβ) and its amyloid precursor protein (APP) C-terminal fragment C99 were largely reduced in the cortex and hippocampus of 5xFAD/MT5-MMP−/−, compared to 5xFAD mice. Reduced amyloidosis in bigenic mice was concomitant with decreased glial reactivity and interleukin-1β (IL-1β) levels, and the preservation of long-term potentiation (LTP) and spatial learning, without changes in the activity of α-, β- and γ-secretases. The positive impact of MT5-MMP deficiency was still noticeable at 16 months of age, as illustrated by reduced amyloid burden and gliosis, and a better preservation of the cortical neuronal network and synaptophysin levels in bigenic mice. MT5-MMP expressed in HEKswe cells colocalized and co-immunoprecipitated with APP and significantly increased the levels of Aβ and C99. MT5-MMP also promoted the release of a soluble APP fragment of 95 kDa (sAPP95) in HEKswe cells. sAPP95 levels were significantly reduced in brain homogenates of 5xFAD/MT5-MMP−/− mice, supporting altogether the idea that MT5-MMP influences APP processing. MT5-MMP emerges as a new pro-amyloidogenic regulator of APP metabolism, whose deficiency alleviates amyloid pathology, neuroinflammation and cognitive decline.Electronic supplementary materialThe online version of this article (doi:10.1007/s00018-015-1992-1) contains supplementary material, which is available to authorized users.
Matrix metalloproteinases (MMPs) are pleiotropic endopeptidases involved in a variety of neurodegenerative/neuroinflammatory processes through their interactions with a large number of substrates. Among those, the amyloid precursor protein (APP) and the beta amyloid peptide (Aβ) are largely associated with the development of Alzheimer’s disease (AD). However, the regulation and potential contribution of MMPs to AD remains unclear. In this study, we investigated the evolution of the expression of MMP-2, MMP-9, and membrane-type 1-MMP (MT1-MMP) in the hippocampus at different stages of the pathology (asymptomatic, prodromal-like and symptomatic) in the 5xFAD transgenic mouse AD model. In parallel we also followed the expression of functionally associated factors. Overall, the expression of MMP-2, MMP-9, and MT1-MMP was upregulated concomitantly with the tissue inhibitor of MMPs-1 (TIMP-1) and several markers of inflammatory/glial response. The three MMPs exhibited age- and cell-dependent upregulation of their expression, with MMP-2 and MMP-9 being primarily located to astrocytes, and MT1-MMP to neurons. MMP-9 and MT1-MMP were also prominently present in amyloid plaques. The levels of active MT1-MMP were highly upregulated in membrane-enriched fractions of hippocampus at 6 months of age (symptomatic phase), when the levels of APP, its metabolites APP C-terminal fragments (CTFs), and Aβ trimers were the highest. Overexpression of MT1-MMP in HEK cells carrying the human APP Swedish mutation (HEKswe) strongly increased β-secretase derived C-terminal APP fragment (C99) and Aβ levels, whereas MMP-2 overexpression nearly abolished Aβ production without affecting C99. Our data consolidate the emerging idea of a regulatory interplay between MMPs and the APP/Aβ system, and demonstrate for the first time the pro-amyloidogenic features of MT1-MMP. Further investigation will be justified to evaluate this MMP as a novel potential therapeutic target in AD.
We previously demonstrated that membrane type 1 (MT1) matrix metalloproteinase (MMP) was up‐regulated in the hippocampus of the model of transgenic mice bearing 5 familial mutations on human amyloid precursor protein (APP) and presenilin 1 of Alzheimer disease (AD), and that the proteinase increased the levels of amyloid β peptide (Aβ) and its APP C‐terminal fragment of 99 aa in a heterologous cell system. Here we provide further evidence that MT1‐MMP interacts with APP and promotes amyloidogenesis in a proteolytic‐dependent manner in Swedish APP‐expressing human embryonic kidney 293 (HEKswe) cells. MT1‐MMP–mediated processing of APP releases a soluble APP fragment, sAPP95. This process partly requires the activation of endogenous MMP‐2 but is independent of β‐site APP cleaving enzyme 1 (BACE‐1) or α‐secretase activities. In contrast, MT1‐MMP–mediated increase of Aβ levels involved BACE‐1 activity and was inhibited by tissue inhibitor of MMP‐2, a natural inhibitor of both MT1‐MMP and MMP‐2. Interestingly, near abolishment of basal Aβ production upon BACE‐1 inhibition was rescued by MT1‐MMP, indicating that the latter could mimic β‐secretase–like activity. Moreover, MT1‐MMP promoted APP/Aβ localization in endosomes, where Aβ production mainly occurs. These data unveil new mechanistic insights to support the proamyloidogenic role of MT1‐MMP based on APP processing and trafficking, and reinforce the idea that this proteinase may become a new potential therapeutic target in AD.—Paumier, J.‐M., Py, N. A., González, L. G., Bernard, A., Stephan, D., Louis, L., Checler, F., Khrestchatisky, M., Baranger, K., Rivera, S. Proamyloidogenic effects of membrane type 1 matrix metalloproteinase involve MMP‐2 and BACE‐1 activities, and the modulation of APP trafficking. FASEB J. 33, 2910–2927 (2019). http://www.fasebj.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.