Purpose: Serum IGF-1 (Insulin like growth factor 1) and Growth Hormone (GH) provocative tests are reasonable tools for screening and diagnosis of idiopathic GH Deficiency (IGHD). However, the average cut-off points applied on these tests have a lower level of evidence and produce large amounts of false results. The aim of this study is to evaluate the sensitivity, specificity, and accuracy of IGF-1 and GH stimulation tests as diagnostic tools for IGHD, using clinical response to recombinant human GH (rhGH) treatment as diagnostic standard [increase of at least 0.3 in height standard deviation (H-SD) in 1 year].Methods: We performed a prospective study with 115 children and adolescents presenting short stature (SS), without secondary SS etiologies such as organic lesions, genetic syndromes, thyroid disorders. They were separated into Group 1 [patients with familial SS or constitutional delay of growth and puberty (CDGP), not treated with rhGH], Group 2 (patients with suspicion of IGHD with clinical response to rhGH treatment), and Group 3 (patients with suspicion of IGHD without growth response to rhGH treatment). Then, they were assessed for diagnostic performance of IGF-1, Insulin Tolerance Test (ITT) and clonidine test (CT) alone and combined at different cut-off points.Results: Based on the ROC curve, the best cut-off points found for IGF-1, ITT, and CT when they were used isolated were −0.492 SDS (sensitivity: 50%; specificity: 53.8%; accuracy: 46.5%), 4.515 μg/L (sensitivity: 75.5%; specificity: 45.5%; accuracy: 52.7%), and 4.095 μg/L (sensitivity: 54.5%; specificity: 52.6%; accuracy: 56.9%), respectively. When we had combined IGF-1 with−2SD as cut-off alongside ITT or CT, we found 7 μg/L as the best cut-off point. In this situation, ITT had sensitivity, specificity and accuracy of 93.9, 81.8, and 90.1%, while CT had 93.2, 68.4, and 85.7%, respectively.Conclusion: Our data suggest that diagnosis of IGHD should be established based on a combination of clinical expertise, auxologic, radiologic, and laboratorial data, using IGF-1 at the −2SD threshold combined, with ITT or CT at the cut-off point of 7 μg/L. Additional studies, similar to ours, are imperative to establish cut-off points based on therapeutic response to rhGH in IGHD, which would be directly related to a better treatment outcome.
Background: Peripheral arterial disease in patients with type 2 diabetes mellitus is an important risk factor for vascular events. Recommendations about whether ankle-brachial index should be performed differ depending on the source; therefore, it is necessary to re-evaluate the most important risk factors associated with peripheral arterial disease and whether it is useful to perform ankle-brachial index in newly diagnosed and drug-naïve patients with diabetes, independent of age or peripheral arterial disease symptoms. Methods: A total of 711 subjects were divided into groups: group 1, 600 type 2 diabetes mellitus patients, symptomatic or not for peripheral arterial disease; group 2, 61 type 2 diabetes mellitus patients newly diagnosed and drug naïve; and group 3, 50 subjects without diabetes. Ankle-brachial index, medical records and physical examination were performed in all patients, accessing cardiovascular risk factors. Results: Analysing group 1 asymptomatic patient to peripheral arterial disease, we found abnormal ankle-brachial index in 49% (77/156) ⩾50 years and 42% (16/38) <50 years ( p = not significant). Considering drug-naïve patients, a peripheral arterial disease prevalence of 39% (24/61) was found; among these, 48% (13/27) were <50 years and 32% (11/34) were ⩾50 years ( p = not significant). A forward stepwise regression model was developed, with type 2 diabetes mellitus duration ( r2 = 0.12) and sedentary lifestyle ( r2 = 0.14) found as independent variable predictors of severity of peripheral arterial disease, related to ankle-brachial index. Conclusion: We suggest that, in type 2 diabetes mellitus, ankle-brachial index should be measured at diagnosis. In addition, sedentary lifestyle was strongly associated with presence and severity of peripheral arterial disease.
Sensorineural hearing impairment has been associated with DM, and it is probably linked to the same pathophysiological mechanisms as well-established in microvascular diabetes complications. The study of otoacoustic emissions (OAEs) is useful to identify subclinical cochlear dysfunction. Therefore, the aim of this study was to evaluate the association between abnormal OAEs responses, diabetic kidney disease (DKD) and diabetic cardiac autonomic neuropathy (CAN). We performed a cross-sectional study with 37 type 1 DM patients without auditory symptoms, submitted to the study of Distortion Product Otoacoustic Emissions (DPOAEs) and screened for DKD and CAN. The otoacoustic emissions responses were considered abnormal in 27/37 (73%) patients. A correlation was found between abnormal OAEs responses and presence of DKD (r = 0.36, p < 0.05), and 14/16 (88%) patients with a lower amplitude of OAEs in 8 kHz frequency band presented DKD. Abnormal OAEs responses in the 6 kHz frequency band were correlated with the presence (r = 0.41, p = 0.01) and severity of CAN (r = 0.44, p < 0.001). Additionally, 7/9 (78%) patients with abnormal OAE responses in this frequency also presented abnormal CAN scores. Our results suggest that abnormal otoacoustic emissions responses in high frequency bands are associated with diabetes microvascular complications and could be a risk marker for DKD and CAN, presenting low sensitivity and high specificity. Therefore, assuming that hearing impairment is a pre-clinical stage of hearing loss, performing distortion product otoacoustic emissions in T1DM patients with microvascular complications could be useful to identify those who would be benefit with regular audiologic follow up and tighter diabetes control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.