Cytoplasmic mRNA movements ultimately determine the spatial distribution of protein synthesis. Although some mRNAs are compartmentalized in cytoplasmic regions, most mRNAs, such as housekeeping mRNAs or the poly-adenylated mRNA population, are believed to be distributed throughout the cytoplasm. The general mechanism by which all mRNAs may move, and how this may be related to localization, is unknown. Here, we report a method to visualize single mRNA molecules in living mammalian cells, and we report that, regardless of any specific cytoplasmic distribution, individual mRNA molecules exhibit rapid and directional movements on microtubules. Importantly, the beta-actin mRNA zipcode increased both the frequency and length of these movements, providing a common mechanistic basis for both localized and nonlocalized mRNAs. Disruption of the cytoskeleton with drugs showed that microtubules and microfilaments are involved in the types of mRNA movements we have observed, which included complete immobility and corralled and nonrestricted diffusion. Individual mRNA molecules switched frequently among these movements, suggesting that mRNAs undergo continuous cycles of anchoring, diffusion, and active transport.
The 3'-untranslated region of c-myc mRNA contains a perinuclear localisation signal which is sufficient to target beta-globin coding sequences. The link between perinuclear mRNA localisation and translation has been investigated using cells transfected with chimeric gene constructs in which globin reporter sequences were linked to the c-myc 3'-untranslated region and the iron-responsive element from ferritin mRNA. Iron supplementation of the medium promoted translation of the chimeric mRNA as assessed by its presence in polysomes; in situ hybridisation showed that the mRNA was localised around the nucleus. Treatment with the iron chelator desferrioxamine for 16 h prevented both translation and mRNA localisation. In controls where the expressed mRNA lacked the iron-responsive element desferrioxamine had no effect upon localisation. In contrast, arrest of on-going global translation by puromycin treatment had no effect on mRNA localisation. The data suggest that if initiation of translation of a mRNA containing the c-myc localisation signal is prevented in some way then localisation does not occur, whereas once the mRNA has been localised further translation is not required to maintain mRNA localisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.