PTEN down-regulation after hepatectomy promotes the burning of TRAS-derived lipids to fuel hypertrophic liver regeneration. Therefore, the anabolic function of PTEN deficiency in resting liver is transformed into catabolic activities upon tissue loss. These findings portray PTEN as a node coordinating liver growth with its energy demands and emphasize the need of lipids for regeneration. (Hepatology 2017;66:908-921).
Defective regeneration of small-for-size (SFS) liver remnants and partial grafts remains a key limiting factor in the application of liver surgery and transplantation. Exogenous melatonin (MLT) has protective effects on hepatic ischemia-reperfusion injury (IRI), but its influence on graft regeneration is unknown. The aim of the study is to investigate the role of MLT in IRI and graft regeneration in settings of partial liver transplantation. We established three mouse models to study hepatic IRI and regeneration associated with partial liver transplantation: (I) IR+PH group: 60 minutes liver ischemia (IR) plus 2/3 hepatectomy (PH); (II) IR+exPH group: 60 minutes liver IR plus extended hepatectomy (exPH) associated with the SFS syndrome; (III) SFS-LT group: Arterialized 30% SFS liver transplant. Each group was divided into MLT or vehicle-treated subgroups. Hepatic injury, inflammatory signatures, liver regeneration, and animal survival rates were assessed. MLT reduced liver injury, enhanced liver regeneration, and promoted interleukin (IL) 6, IL10, and tumor necrosis factor-α release by infiltrating, inflammatory Ly6C+ F4/80+ monocytes in the IR+PH group. MLT-induced IL6 significantly improved hepatic microcirculation and survival in the IR+exPH model. In the SFS-LT group, MLT promoted graft regeneration and increased recipient survival along with increased IL6/GP130-STAT3 signaling. In IL6 mice, MLT failed to promote liver recovery, which could be restored through recombinant IL6. In the IR+exPH and SFS-LT groups, inhibition of the IL6 co-receptor GP130 through SC144 abolished the beneficial effects of MLT. MLT ameliorates SFS liver graft IRI and restores regeneration through monocyte-released IL6 and downstream IL6/GP130-STAT3 signaling.
The CD26/DPP4-inhibitor vildagliptin suppresses lung cancer grow th via macrophage-mediated NK cell activity Carcinogenesis -
Pancreatic ductal adenocarcinoma (PDAC), which is the primary cause of pancreatic cancer mortality, is poorly responsive to currently available interventions. Identifying new targets that drive PDAC formation and progression is critical for developing alternative therapeutic strategies to treat this lethal malignancy. Using genetic and pharmacological approaches, we investigated in vivo and in vitro whether uptake of the monoamine serotonin [5-hydroxytryptamine (5-HT)] is required for PDAC development. We demonstrated that pancreatic acinar cells have the ability to readily take up 5-HT in a transport-mediated manner. 5-HT uptake promoted activation of the small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1), which is required for transdifferentiation of acinar cells into acinar-to-ductal metaplasia (ADM), a key determinant in PDAC development. Consistent with the central role played by Rac1 in ADM formation, inhibition of the 5-HT transporter Sert (Slc6a4) with fluoxetine reduced ADM formation both in vitro and in vivo in a cell-autonomous manner. In addition, fluoxetine treatment profoundly compromised the stromal reaction and affected the proliferation and lipid metabolism of malignant PDAC cells. We propose that Sert is a promising therapeutic target to counteract the early event of ADM, with the potential to stall the initiation and progression of pancreatic carcinogenesis. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Liver metastases are the most frequent cause of death due to colorectal cancer (CRC). Syngeneic orthotopic animal models, based on the grafting of cancer cells or tissue in host liver, are efficient systems for studying liver tumors and their (patho)physiological environment. Here we describe selective portal vein injection as a novel tool to generate syngeneic orthotopic models of liver tumors that avoid most of the weaknesses of existing syngeneic models. By combining portal vein injection of cancer cells with the selective clamping of distal liver lobes, tumor growth is limited to specific lobes. When applied on MC-38 CRC cells and their mouse host C57BL6, selective portal vein injection leads with 100% penetrance to MRI-detectable tumors within 1 wk, followed by a steady growth until the time of death (survival ∼7 wk) in the absence of extrahepatic disease. Similar results were obtained using CT-26 cells and their syngeneic Balb/c hosts. As a proof of principle, lobe-restricted liver tumors were also generated using Hepa1-6 (C57BL6-syngeneic) and TIB-75 (Balb/c-syngeneic) hepatocellular cancer cells, demonstrating the general applicability of selective portal vein injection for the induction of malignant liver tumors. Selective portal vein injection is technically straightforward, enables liver invasion via anatomical routes, preserves liver function, and provides unaffected liver tissue. The tumor models are reproducible and highly penetrant, with survival mainly dependent on the growth of lobe-restricted liver malignancy. These models enable biological studies and preclinical testing within short periods of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.