Sepsis induces a state of growth hormone (GH) resistance associated with a decrease of circulating insulin-like growth factor (IGF) I, a GH-dependent anabolic hormone mainly produced by the liver. To address the mechanisms that might trigger GH insensitivity in sepsis, we investigated the regulation of liver GH receptor (GHR) and its gene expression by endotoxin. Endotoxin injection in rats decreased serum IGF-I and liver GH-binding sites after 10 h. In contrast to liver GHR, circulating GH-binding protein (GHBP) levels were not significantly reduced after endotoxin injection. The parallel decrease in IGF-I and GHR and in their corresponding liver mRNAs suggests that decreased serum IGF-I and liver GHR were likely to result from decreased liver synthesis. Although GH administration in control animals significantly enhanced serum IGF-I, it did fail to prevent the decline in serum IGF-I and liver GH-binding sites in endotoxemic rats. In this study, we showed that endotoxin injection induces a state of GH insensitivity associated with decreased liver GHR. This decline in GHR, which cannot be prevented by exogenous GH, might contribute to the GH insensitivity observed in sepsis.
The M42 aminopeptidases are dinuclear aminopeptidases displaying a peculiar tetrahedral-shaped structure with twelve subunits. Their quaternary structure results from the selfassembly of six dimers controlled by their divalent metal ion cofactors. The oligomeric state transition remains debated despite the structural characterization of several archaeal M42 aminopeptidases. The main bottleneck is the lack of dimer structures, hindering the understanding of structural changes occurring during the oligomerization process. We present the first dimer structure of an M42 aminopeptidase, TmPep1050 of Thermotoga maritima, along with the dodecamer structure. The comparison of both structures allows to describe how the metal ion cofactors modulate the active site fold and, subsequently, affect the interaction interface between dimers. A mutational study shows that the M1 site strictly controls dodecamer formation. The dodecamer structure of TmPep1050 also reveals that a part of the dimerization domain delimits the catalytic pocket and could participate in substrate binding.
The genome of Pseudomonas thivervalensis LMG 21626T has been sequenced and a genomic, genetic and structural analysis of the siderophore mediated iron acquisition was undertaken. Pseudomonas thivervalensis produces two structurally new siderophores, pyoverdine PYO thi which is typical for P. thivervalensis strains and a closely related strain, and the lipopeptidic siderophore histicorrugatin which is also detected in P. lini. Histicorrugatin consists out of an eight amino acid long peptide which is linked to octanoic acid. It is structurally related to the siderophores corrugatin and ornicorrugatin.
Several aminopeptidases of the M42 family have been described as tetrahedral-shaped dodecameric (TET) aminopeptidases. A current hypothesis suggests that these enzymes are involved, along with the tricorn peptidase, in degrading peptides produced by the proteasome. Yet the M42 family remains ill defined, as some members have been annotated as cellulases because of their homology with CelM, formerly described as an endoglucanase of Clostridium thermocellum. Here we describe the catalytic functions and substrate profiles CelM and of TmPep1050, the latter having been annotated as an endoglucanase of Thermotoga maritima. Both enzymes were shown to catalyze hydrolysis of nonpolar aliphatic L-amino acid-pNA substrates, the L-leucine derivative appearing as the best substrate. No significant endoglucanase activity was measured, either for TmPep1050 or CelM. Addition of cobalt ions enhanced the activity of both enzymes significantly, while both the chelating agent EDTA and bestatin, a specific inhibitor of metalloaminopeptidases, proved inhibitory. Our results strongly suggest that one should avoid annotating members of the M42 aminopeptidase family as cellulases. In an updated assessment of the distribution of M42 aminopeptidases, we found TET aminopeptidases to be distributed widely amongst archaea and bacteria. We additionally observed that several phyla lack both TET and tricorn. This suggests that other complexes may act downstream from the proteasome.
The M42 aminopeptidases are a family of dinuclear aminopeptidases widely distributed in 16 Prokaryotes. They are potentially associated to the proteasome, achieving complete peptide 17 destruction. Their most peculiar characteristic is their quaternary structure, a tetrahedron-18 shaped particle made of twelve subunits. The catalytic site of M42 aminopeptidases is defined 19 by seven conserved residues. Five of them are involved in metal ion binding which is important 20 to maintain both the activity and the oligomeric state. The sixth conserved residue, a glutamate, 21 is the catalytic base deprotonating the water molecule during peptide bond hydrolysis. The 22 seventh residue is an aspartate whose function remains poorly understood. This aspartate 23 residue, however, must have a critical role as it is strictly conserved in all MH clan enzymes. 24 It forms some kind of catalytic triad with the histidine residue and the metal ion of the M2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.