Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide and is considered to be the outcome of chronic liver inflammation. Currently, the main treatment for HCC is surgical resection. However, survival rates are suboptimal partially because of tumor recurrence in the remaining liver. Our aim was to understand the molecular mechanisms linking liver regeneration under chronic inflammation to hepatic tumorigenesis. Mdr2-KO mice, a model of inflammation-associated cancer, underwent partial hepatectomy (PHx), which led to enhanced hepatocarcinogenesis. Moreover, liver regeneration in these mice was severely attenuated. We demonstrate the activation of the DNA damage-response machinery and increased genomic instability during early liver inflammatory stages resulting in hepatocyte apoptosis, cell-cycle arrest, and senescence and suggest their involvement in tumor growth acceleration subsequent to PHx. We propose that under the regenerative proliferative stress induced by liver resection, the genomic unstable hepatocytes generated during chronic inflammation escape senescence and apoptosis and reenter the cell cycle, triggering the enhanced tumorigenesis. Thus, we clarify the immediate and long-term contributions of the DNA damage response to HCC development and recurrence. hepatocellular carcinoma | MRI | MDR2 -/-mice | genomic instability
Liver injury is exacerbated by the transfusion of stored blood, primarily due to the change in the rheological properties of RBC. This data call for clinical studies in patients undergoing liver resection or transplantation.
The applicability of the non-invasive HRI method suggests its potential use for the evaluation of renal perfusion and vascular reactivity, excluding the need for contrast-agent administration.
Background:The poor prognosis of patients with colorectal-cancer liver metastases (CRLM) and the insufficiency of available treatments have raised the need for alternative curative strategies. We aimed to assess the therapeutic potential of TL-118, a new anti-angiogenic drug combination, for CRLM treatment, in a mouse model.Methods:The therapeutic potential of TL-118 was evaluated and compared with B20-4.1.1 (B20; anti-VEGF antibody) and rapamycin in CRLM-bearing mice. Tumour progression and the vascular changes were monitored by MRI. Additionally, mice survival, cell proliferation, apoptosis and vessel density were evaluated.Results:This study demonstrated an unequivocal advantage to TL-118 therapy by significantly prolonging survival (threefold) and reducing metastasis perfusion and vessel density (ninefold). The underlying mechanism for TL-118-treatment success was associated with hepatic perfusion attenuation resulting from reduced nitric-oxide (NO) serum levels as elucidated by using hemodynamic response imaging (HRI, a functional MRI combined with hypercapnia and hyperoxia). Further, systemic hepatic perfusion reduction during the initial treatment phase by adding NO inhibitor has proven to be essential for reaching maximal therapeutic effects for both TL-118 and B20.Conclusion:TL-118 harbours a potential clinical benefit to CLRM patients. Moreover, the reduction of hepatic perfusion at early stages of anti-angiogenic therapies by adding NO inhibitor is crucial for achieving maximal anti-tumour effects.
Recently, we have demonstrated the feasibility of using hemodynamic response imaging (HRI), a functional magnetic resonance imaging (MRI) method combined with hypercapnia and hyperoxia, for monitoring vascular changes during liver pathologies without the need of contrast material. In this study, we evaluated HRI ability to assess changes in liver tumor vasculature during tumor establishment, progression, and antiangiogenic therapy. Colorectal adenocarcinoma cells were injected intrasplenically to model colorectal liver metastasis (CRLM) and the Mdr2 knockout mice were used to model primary hepatic tumors. Hepatic perfusion parameters were evaluated using the HRI protocol and were compared with contrast-enhanced (CE) MRI. The hypovascularity and the increased arterial blood supply in well-defined CRLM were demonstrated by HRI. In CRLM-bearing mice, the entire liver perfusion was attenuated as the HRI maps were significantly reduced by 35%. This study demonstrates that the HRI method showed enhanced sensitivity for small CRLM (1-2 mm) detection compared with CE-MRI (82% versus 38%, respectively). In addition, HRI could demonstrate the vasculature alteration during CRLM progression (arborized vessels), which was further confirmed by histology. Moreover, HRI revealed the vascular changes induced by rapamycin treatment. Finally, HRI facilitates primary hepatic tumor characterization with good correlation to the pathologic differentiation. The HRI method is highly sensitive to subtle hemodynamic changes induced by CRLM and, hence, can function as an imaging tool for understanding the hemodynamic changes occurring during CRLM establishment, progression, and antiangiogenic treatment. In addition, this method facilitated the differentiation between different types of hepatic lesions based on their vascular profile noninvasively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.