The major limitation to the development of embryo production in cattle is the strong between-animal variability in ovulatory response to FSH-induced superovulation, mainly due to differences in ovarian activity at the time of treatment. This study aimed to establish whether anti-Müllerian hormone (AMH) was an endocrine marker of follicular populations in the cow, as in human, and a possible predictor of the ovarian response to superovulation. Anti-Müllerian hormone concentrations in plasma varied 10-fold between cows before treatment and were found to be highly correlated with the numbers of 3- to 7-mm antral follicles detected by ovarian ultrasonography before treatment (r=0.79, P<0.001) and the numbers of ovulations after treatment (r=0.64, P<0.01). Between-animal differences in AMH concentrations were found to be unchanged after a 3-mo delay (r=0.87, P<0.01), indicating that AMH endocrine levels were characteristic of each animal on a long-term period. The population of healthy 3- to 7-mm follicles was the main target of superovulatory treatments, contained the highest AMH concentrations and AMH mRNA levels compared with larger follicles, and contributed importantly to AMH endocrine levels. In conclusion, AMH was found to be a reliable endocrine marker of the population of small antral gonadotropin-responsive follicles in the cow. Moreover, AMH concentrations in the plasma of individuals were indicative of their ability to respond to superovulatory treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.