Inhibition of specific transcriptional regulatory proteins is a new approach to control gene expression. Transcriptional activity of DNA-binding proteins can be inhibited by the use of double-stranded (ds) oligodeoxynucleotides that compete for the binding to their specific target sequences in promoters and enhancers. As a model, we used phosphodiester dumbbell oligonucleotides containing a binding site for the liver-enriched transcription factor HNF-1 (Hepatocyte Nuclear Factor 1). Binding affinity of HNF-1 to dumbbell oligonucleotides was the same as that to ds oligonucleotides, as determined by gel retardation assays. HNF-1 dumbbells specifically inhibited in vitro transcription driven by the albumin promoter by more than 90%. HNF-1-dependent activation of a CAT reporter plasmid was specifically inhibited when the HNF-1 dumbbell oligonucleotide was added at nM concentration to transiently transfected C33 cells. On the contrary, HNF-1 ds oligonucleotides, which displayed the same activity as the dumbbell oligonucleotides in the in vitro assays, were no more effective in the ex vivo experiments. These results might reflect the increased stability of the circular dumbbell oligonucleotides towards cellular nuclease degradation, as shown in vitro with nucleolytic enzymes. Dumbbell oligonucleotides containing unmodified phosphodiester bonds may efficiently compete for binding of specific transcription factors within cells, then providing a potential therapeutic tool to control disease-causing genes.
SummaryThe biosynthesis of coagulation factor VIII (FVIII) is hampered by successive controls that limit its production. To improve this production, a truncated intron I sequence of factor IX (TFIXI1) was inserted in FVIII cDNA in place of FVIII introns 1, 12 and 13 and also as a combination between introns 1 and 12, and introns 1 and 13. The intron 12 and 13 locations were targeted because this region was previously shown to contain a transcriptional silencer. The expression of FVIII in CHO and HepG2 cells revealed important variations in the properties of the minigenes depending on the TFIXI1 insertion sites. In FVIII intron 13 location the TFIXI1 seemed to diminish the transcriptional silencer activity, whereas it was poorly spliced in intron 12 position. Among the five constructs, FVIII I1+13 leaded to a significant improvement in FVIII secretion (13 times) that was associated with a dramatic intracellular accumulation in cells. Therefore, the FVIII I1+13 minigene could represent a particular interest to produce recombinant FVIII in vitro as well as in the aim of gene therapy of haemophilia A.
We investigated the mechanisms responsible for severe factor IX (FIX) deficiency in two cross-reacting material (CRM)-negative hemophilia B patients with a mutation in the first and second epidermal growth factor (EGF) domains of FIX (C71Y and C109Y, respectively). We have determined the kinetics of mutant FIX biosynthesis and secretion in comparison with wild-type FIX (FIXwt). In transfected cells, FIXwt was retrieved as two intracellular molecular forms, rapidly secreted into the culture medium. One appeared to be correctly N-glycosylated, and corresponded to a form trafficking between the endoplasmic reticulum (ER) and Golgi apparatus. The other corresponded to the mature form, ready to be secreted, exhibiting correct N-glycosylation and sialylation. In contrast, the two mutants, FIXC71Y and FIXC109Y, were not secreted from the cells and did not accumulate intracellularly. Relative to FIXwt, they were retained longer in the ER and were only N-glycosylated. In addition, the intracellular concentration of the FIX mutants increased when ALLN, an inhibitor of cysteine proteases and of the proteasome degradation pathway, was added to the culture medium. Both the FIX mutants and FIXwt were associated in the ER with the 78-kDa glucose-regulated protein (GRP78/BiP) and calreticulin (CRT), though the amount of CRT associated with the two mutants was twice as strong as with FIXwt. These results strongly suggest that chaperone and lectin molecules act in concert to ensure both proper folding of FIXwt and the retention of mutant molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.