This review describes the antibacterial effects of cinnamon and its constituents, such as cinnamaldehyde and cinnamic acid, against pathogenic Gram-positive and Gram-negative bacteria. The review also provides an overview of the current knowledge of the primary modes of action of these compounds as well as the synergistic interactions between cinnamon or its constituents with known antibacterial agents. This information will be useful in improving the effectiveness of therapeutics based on these compounds.
The global spread of carbapenem-resistant Acinetobacter baumannii (A. baumannii) strains has restricted the therapeutic options available to treat infections due to this pathogen. Understanding the prevalence of such infections and the underlying genetic mechanisms of resistance may help in the implementation of adequate measures to control and prevent acquisition of nosocomial infections, especially in an intensive care unit setting. This study describes the molecular characteristics and risk factors associated with OXA-23-producing A. baumannii infections. A case-control study was undertaken from September/2013 to April/2015. Acquisition of OXA-23-producing A. baumannii was found to be associated with the use of nasogastric tubes, haemodialysis, and the use of cephalosporins. These isolates were only susceptible to amikacin, gentamicin, tigecycline, and colistin, and contained the ISAba1 insertion sequence upstream ofblaOXA-23 and blaOXA-51 genes. Twenty-six OXA-23-producing A. baumannii strains belonged to the ST79 (CC79) clonal group,and patients infected or colonised by these isolates had a higher mortality rate (34.6%). In conclusion, this study showed a dissemination of OXA-23-producing A. baumannii strains that was associated with several healthcare-related risk factors and high mortality rates among intensive care unit patients.
Aims: The objective of this study was to investigate the detection of SEE, SEG, SEH and SEI in strains of Staphylococcus aureus and coagulase‐negative staphylococci (CNS) using RT‐PCR. Methods and Results: In this study, 90 Staph. aureus strains and 90 CNS strains were analysed by PCR for the detection of genes encoding staphylococcal enterotoxins (SE) E, G, H and I. One or more genes were detected in 54 (60%) Staph. aureus isolates and in 29 (32·2%) CNS isolates. Staphylococcus epidermidis was the most frequently isolated CNS species (n = 64, 71·1%), followed by Staphylococcus warneri (n = 8, 8·9%) and other species (Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus simulans, Staphylococcus saprophyticus and Staphylococcus xylosus: n = 18, 20%). The genes studied were detected in Staph. epidermidis, Staph. warneri, Staph. haemolyticus, Staph. hominis, Staph. simulans and Staph. lugdunensis. The highest frequency of genes was observed in Staph. epidermidis and Staph. warneri, a finding indicating differences in the pathogenic potential between CNS species and highlighting the importance of the correct identification of these micro‐organisms. RT‐PCR used for the detection of mRNA revealed the expression of SEG, SEH and/or SEI in 32 (59·3%) of the 90 Staph. aureus isolates, whereas expression of some of these genes was observed in 10 (34·5%) of the 90 CNS isolates. Conclusions: Staphylococcus epidermidis was the most toxigenic CNS species. Among the other species, only Staph. warneri and Staph. lugdunensis presented a positive RT‐PCR result. PCR was efficient in confirming the toxigenic capacity of Staph. aureus and CNS. Significance and Impact of the Study: This study permitted to confirm the toxigenic capacity of CNS to better characterize the pathogenic potential of this group of micro‐organisms. In addition, it permitted the detection of SEG, SEH and SEI, enterotoxins that cannot be detected by commercially available immunological methods.
Introduction: Plant products are sources for drug development against multidrug resistant bacteria. Methods: The antimicrobial activity of Origanum vulgare L. essential oil (OVeo) against carbapenem-resistant strains was assessed by disk-diffusion, microdilution (REMA-Resazurin Microtiter Assay), and time kill assays. Results: Carbapenemase production was confirmed for all strains. OVeo exhibited a minimum inhibitory concentration of 0.059% v/v for Klebsiella pneumoniae and Serratia marcescens, and of 0.015 % v/v for Acinetobacter baumannii. A decrease in cell count was observed after a 4 h treatment. Conclusions: OVeo antimicrobial effect was rapid and consistent, making it a candidate for developing alternative therapeutic options against carbapenem-resistant strains.
Multidrug resistance prompts the search for new sources of antibiotics with new targets at bacteria cell. To investigate the antibacterial activity of Cinnamomum cassia L. essential oil (CCeo) alone and in combination with antibiotics against carbapenemase-producing Klebsiella pneumoniae and Serratia marcescens. The antimicrobial susceptibility of the strains was determined by Vitek ® 2 and confirmed by MALDI-TOF/TOF. The antibacterial activity of CCeo and its synergism with antibiotics was determined using agar disk diffusion, broth microdilution, time-kill, and checkboard methods. The integrity of the bacterial cell membrane in S. marcescens was monitored by protein leakage assay. CCeo exhibited inhibitory effects with MIC = 281.25 μg.mL-1. The association between CCeo and polymyxin B showed a decrease in terms of viable cell counts on survival curves over time after a 4 hour-treatment with a FIC index value of 0.006. Protein leakage was observed with increasing concentrations for CCeo and CCeo + polymyxin B treatments. CCeo showed antibacterial activity against the studied strains. When associated with polymyxin B, a synergistic effect was able to inhibit bacterial growth rapidly and consistently, making it a potential candidate for the development of an alternative treatment and drug delivery system for carbapenemase-producing strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.