Predicting a subject's ability to use a Brain Computer Interface (BCI) is one of the major issues in the BCI domain. Relevant applications of forecasting BCI performance include the ability to adapt the BCI to the needs and expectations of the user, assessing the efficiency of BCI use in stroke rehabilitation, and finally, homogenizing a research population. A limited number of recent studies have proposed the use of subjective questionnaires, such as the Motor Imagery Questionnaire Revised-Second Edition (MIQ-RS). However, further research is necessary to confirm the effectiveness of this type of subjective questionnaire as a BCI performance estimation tool. In this study we aim to answer the following questions: can the MIQ-RS be used to estimate the performance of an MI-based BCI? If not, can we identify different markers that could be used as performance estimators? To answer these questions, we recorded EEG signals from 35 healthy volunteers during BCI use. The subjects had previously completed the MIQ-RS questionnaire. We conducted an offline analysis to assess the correlation between the questionnaire scores related to Kinesthetic and Motor imagery tasks and the performances of four classification methods. Our results showed no significant correlation between BCI performance and the MIQ-RS scores. However, we reveal that BCI performance is correlated to habits and frequency of practicing manual activities.
Hundreds of millions of general anesthesia are performed each year on patients all over the world. Among these patients, 0.1–0.2% are victims of Accidental Awareness during General Anesthesia (AAGA), i.e., an unexpected awakening during a surgical procedure under general anesthesia. Although anesthesiologists try to closely monitor patients using various techniques to prevent this terrifying phenomenon, there is currently no efficient solution to accurately detect its occurrence. We propose the conception of an innovative passive brain-computer interface (BCI) based on an intention of movement to prevent AAGA. Indeed, patients typically try to move to alert the medical staff during an AAGA, only to discover that they are unable to. First, we examine the challenges of such a BCI, i.e., the lack of a trigger to facilitate when to look for an intention to move, as well as the necessity for a high classification accuracy. Then, we present a solution that incorporates Median Nerve Stimulation (MNS). We investigate the specific modulations that MNS causes in the motor cortex and confirm that they can be altered by an intention of movement. Finally, we perform experiments on 16 healthy participants to assess whether an MI-based BCI using MNS is able to generate high classification accuracies. Our results show that MNS may provide a foundation for an innovative BCI that would allow the detection of AAGA.
Diffusion in social networks has been studied extensively in the past few years. Most previous work assumes that the underlying network is a static object that remains unchanged as the diffusion process progresses. However, there are several real-life networks that change dynamically over time.In this paper, we study diffusion on such evolving networks and extend the popular Independent Cascade and Linear Threshold models to account for network evolution. In particular, we introduce two natural variations, a persistent and a transient one, to capture diffusions of different types. We consider the problem of influence maximization where the goal is to select a few influential nodes to initiate a diffusion with maximum spread. We show that, surprisingly, when considering evolving networks the diffusion function is no longer submodular for the transient models, and not even monotone for the transient Independent Cascade model. We also show that, depending on the model, delaying the activation of the initiators may improve diffusion. Our experiments, using three real datasets, demonstrate the effect of network evolution on the diffusion process, and highlight the importance of timing in the selection process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.