Summary In many crop species, natural variation in eIF 4E proteins confers resistance to potyviruses. Gene editing offers new opportunities to transfer genetic resistance to crops that seem to lack natural eIF 4E alleles. However, because eIF 4E are physiologically important proteins, any introduced modification for virus resistance must not bring adverse phenotype effects. In this study, we assessed the role of amino acid substitutions encoded by a Pisum sativum eIF 4E virus‐resistance allele (W69L, T80D S81D, S84A, G114R and N176K) by introducing them independently into the Arabidopsis thaliana eIF 4E1 gene, a susceptibility factor to the Clover yellow vein virus (Cl YVV ). Results show that most mutations were sufficient to prevent Cl YVV accumulation in plants without affecting plant growth. In addition, two of these engineered resistance alleles can be combined with a loss‐of‐function eIF iso4E to expand the resistance spectrum to other potyviruses. Finally, we use CRISPR ‐ nC as9‐cytidine deaminase technology to convert the Arabidopsis eIF 4E1 susceptibility allele into a resistance allele by introducing the N176K mutation with a single‐point mutation through C‐to‐G base editing to generate resistant plants. This study shows how combining knowledge on pathogen susceptibility factors with precise genome‐editing technologies offers a feasible solution for engineering transgene‐free genetic resistance in plants, even across species barriers.
SummaryTo infect plants, viruses rely heavily on their host's machinery. Plant genetic resistances based on host factor modifications can be found among existing natural variability and are widely used for some but not all crops. While biotechnology can supply for the lack of natural resistance alleles, new strategies need to be developed to increase resistance spectra and durability without impairing plant development. Here, we assess how the targeted allele modification of the Arabidopsis thaliana translation initiation factor eIF4E1 can lead to broad and efficient resistance to the major group of potyviruses. A synthetic Arabidopsis thaliana eIF4E1 allele was designed by introducing multiple amino acid changes associated with resistance to potyvirus in naturally occurring Pisum sativum alleles. This new allele encodes a functional protein while maintaining plant resistance to a potyvirus isolate that usually hijacks eIF4E1. Due to its biological functionality, this synthetic allele allows, at no developmental cost, the pyramiding of resistances to potyviruses that selectively use the two major translation initiation factors, eIF4E1 or its isoform eIFiso4E. Moreover, this combination extends the resistance spectrum to potyvirus isolates for which no efficient resistance has so far been found, including resistance‐breaking isolates and an unrelated virus belonging to the Luteoviridae family. This study is a proof‐of‐concept for the efficiency of gene engineering combined with knowledge of natural variation to generate trans‐species virus resistance at no developmental cost to the plant. This has implications for breeding of crops with broad‐spectrum and high durability resistance using recent genome editing techniques.
Genetic control of fruit shape in Cucumis melo was studied using QTL analysis in two Recombinant Inbred (RI) populations consisting of 163 and 63 individuals, respectively, obtained by crossing the same round-fruited parent with two different elongated-fruit lines. Fruit shape is mainly explained by fruit length in these two populations. Most QTLs for fruit shape and ovary shape detected were found to co-segregate, thus demonstrating early control of fruit shape during ovary development. A high level of correlation between fruit shape and ovary shape was also found in 14 unrelated genetic lines, a finding which suggests that control of fruit shape by gene(s) active early in the ovary is a general feature in C. melo. Two major flower genes, a ( monoecious) and p ( pentamerous), were shown to have major effects on fruit shape. Major tightly linked QTLs for fruit and ovary shape were found close to the a and p genes, probably reflecting their pleiotropic effect on fruit shape. Moreover, one of the two QTLs detected in the Védrantais x PI 414723 population was also found in the Védrantais x PI 161375 population. Variation of fruit shape in melon could be due to variations having quantitative effects on a large set of genes that are probably involved in ovary development.
Melon (Cucumis melo L.) is widely considered as a recalcitrant species for genetic transformation. In this study, we developed different regeneration and transformation protocols and we examined the regeneration process at different steps by histological studies. The highest regeneration rate (1.13 ± 0.02 plants per explant) was obtained using cotyledon explants of the 'Védrantais' genotype on Murashige and Skoog (MS) medium supplemented with 0.2 mg/l 6-benzylaminopurine (BAP) and 0.2 mg/l dimethylallylaminopurine (2-iP). Agrobacterium tumefaciens-mediated transformations with the uidA reporter gene were realized on cotyledon explants cultivated in these conditions: 70-90% of explants expressed a transient GUS activity during the early stages of regeneration, however, only few transgenic plants were obtained (1.8-4.5% of stable transformation with the GV2260pBI101 strain). These results revealed a low capacity of melon GUS-positive cells to regenerate transgenic plants. To evaluate the influence of the Agrobacterium infection on plant regeneration, histological analyses were conducted on explants 2, 7, 15, and 28 days after co-culture with the GV2260pBI101 strain. Genetic transformation occurred in epidermal and sub-epidermal cells and reached the meristematic structures expressing a high level of GUS activity during 14 days of culture; but after this period, most of the meristematic structures showed premature cell vacuolization and disorganization. This disruption of the GUS-positive meristematic areas could be responsible of the difficulties encountered to regenerate melon plants after genetic transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.