Alleviating our society's dependence on petroleum-based chemicals has been highly emphasized due to fossil fuel shortages and increasing greenhouse gas emissions. Isopropanol is a molecule of high potential to replace some petroleum-based chemicals, which can be produced through biological platforms from renewable waste carbon streams such as carbohydrates, fatty acids, or CO2. In this study, for the first time, the heterologous expression of engineered isopropanol pathways were evaluated in a Cupriavidus necator strain Re2133, which was incapable of producing poly-3-hydroxybutyrate [P(3HB)]. These synthetic production pathways were rationally designed through codon optimization, gene placement, and gene dosage in order to efficiently divert carbon flow from P(3HB) precursors toward isopropanol. Among the constructed pathways, Re2133/pEG7c overexpressing native C. necator genes encoding a β-ketothiolase, a CoA-transferase, and codon-optimized Clostridium genes encoding an acetoacetate decarboxylase and an alcohol dehydrogenase produced up to 3.44 g l(-1) isopropanol in batch culture, from fructose as a sole carbon source, with only 0.82 g l(-1) of biomass. The intrinsic performance of this strain (maximum specific production rate 0.093 g g(-1) h(-1), yield 0.32 Cmole Cmole(-1)) corresponded to more than 60 % of the respective theoretical performance. Moreover, the overall isopropanol production yield (0.24 Cmole Cmole(-1)) and the overall specific productivity (0.044 g g(-1) h(-1)) were higher than the values reported in the literature to date for heterologously engineered isopropanol production strains in batch culture. Strain Re2133/pEG7c presents good potential for scale-up production of isopropanol from various substrates in high cell density cultures.
The relationship between changes in mRNA abundance and enzyme activity was determined for three genes over a span of nearly 3 h during amino acid production in Corynebacterium glutamicum. Gene expression changes during C. glutamicum fermentations were examined by complementary DNA (cDNA) microarrays and by a second method for quantitating RNA levels, competitive reverse transcriptase-PCR (RT-PCR). The results obtained independently by both methods were compared and found to be in agreement, thus validating the quantitative potential of DNA microarrays for gene expression profiling. Evidence of a disparity between mRNA abundance and enzyme activity is presented and supports our belief that it is difficult to generally predict protein activity from quantitative transcriptome data. Homoserine dehydrogenase, threonine dehydratase, and homoserine kinase are enzymes involved in the biosynthesis of l-isoleucine and other aspartate-derived amino acids in C. glutamicum. Our data suggest that different underlying regulatory mechanisms may be connected with the expression of the genes encoding each of these three enzymes. Indeed, whereas in one case the increases in enzyme activity exceeded those in the corresponding mRNA abundance, in another case large increases in the levels of gene expression were not congruent with changes in enzyme activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.