Particle image velocimetry (PIV) measurements are made in a highly turbulent swirling flow. In this flow, we observe a coexistence of turbulent fluctuations and an unsteady swirling motion. The proper orthogonal decomposition (POD) is used to separate these two contributions to the total energy. POD is combined with two new vortex identification functions, 1 and 2 . These functions identify the locations of the centre and boundary of the vortex on the basis of the velocity field. The POD computed for the measured velocity fields shows that two spatial modes are responsible for most of the fluctuations observed in the vicinity of the location of the mean vortex centre. These two modes are also responsible for the large-scale coherence of the fluctuations. The POD computed from the 2 scalar field shows that the displacement and deformation of the large-scale vortex are correlated to these modes. We suggest the use of such a method to separate pseudo-fluctuations due to the unsteady nature of the large-scale vortices from fluctuations due to small-scale turbulence.
The prediction of the probability density function (PDF) of a pollutant concentration within atmospheric flows is of primary importance in estimating the hazard related to accidental releases of toxic or flammable substances and their effects on human health. This need motivates studies devoted to the characterization of concentration statistics of pollutants dispersion in the lower atmosphere, and their dependence on the parameters controlling their emissions. As is known from previous experimental results, concentration fluctuations are significantly influenced by the diameter of the source and its elevation. In this study, we aim to further investigate the dependence of the dispersion process on the source configuration, including source size, elevation and emission velocity. To that end we study experimentally the influence of these parameters on the statistics of the concentration of a passive scalar, measured at several distances downwind of the source. We analyze the spatial distribution of the first four moments of the concentration PDFs, with a focus on the variance, its dissipation and production and its spectral density. The information provided by the dataset, completed by estimates of the intermittency factors, allow us to discuss the role of the main mechanisms controlling the scalar dispersion and their link to the form of the PDF. The latter is shown to be very well approximated by a Gamma distribution, irrespective of the emission conditions and the distance from the source. Concentration measurements are complemented by a detailed description of the velocity statistics, including direct estimates of the Eulerian integral length scales from two-point correlations, a measurement that has been rarely presented to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.