This article reviews important features to improve the diagnosis of congenital heart disease (CHD) by applying ultrasound in prenatal cardiac screening. As low and high-risk pregnancies for CHD are subject to routine obstetric ultrasound, the diagnosis of structural heart defects represents a challenge that involves a team of specialists and subspecialists on fetal ultrasonography. In this review, the images highlight normal anatomy of the heart as well as pathologic cases consistent with cardiac malposition and isomerism, septal defects, pulmonary stenosis/atresia, aortic malformations, hypoplastic left ventricle, conotruncal anomalies, tricuspid dysplasia, and Ebstein's anomaly, and univentricular heart, among other congenital cardiovascular defects. Anatomical details of most CHD in fetuses were provided by two-dimensional (2D) ultrasound with higher quality imaging, enhancing diagnostic accuracy in a variety of CHD. Moreover, the accuracy of the cardiac defects in obstetrics ultrasound improves the outcome of most CHD, providing planned delivery, aided genetic counseling, and perinatal management.
Analyses of cardiovascular development have shown an important interplay between heart function, blood flow, and morphogenesis of heart structure during the formation of a four-chambered heart. It is known that changes in vitelline and placental blood flow seemingly contribute substantially to early cardiac hemodynamics. This suggests that in order to understand mammalian cardiac structure-hemodynamic functional relationships, blood flow from the extra-embryonic circulation needs to be taken into account and its possible impact on cardiogenesis defined. Previously published Doppler ultrasound analyses and data of utero-placental blood flow from human studies and those using the mouse model are compared to changes observed with environmental exposures that lead to cardiovascular anomalies. Use of current concepts and models related to mechanotransduction of blood flow and fluid forces may help in the future to better define the characteristics of normal and abnormal utero-placental blood flow and the changes in the biophysical parameters that may contribute to congenital heart defects. Evidence from multiple studies is discussed to provide a framework for future modeling of the impact of experimental changes in blood flow on the mouse heart during normal and abnormal cardiogenesis.
This article reviews important features for improving the diagnosis of fetal arrhythmias by ultrasound in prenatal cardiac screening and echocardiography. Transient fetal arrhythmias are more common than persistent fetal arrhythmias. However, persistent severe bradycardia and sustained tachycardia may cause fetal hydrops, preterm delivery, and higher perinatal morbidity and mortality. Hence, the diagnosis of these arrhythmias during the routine obstetric ultrasound, before the progression to hydrops, is crucial and represents a challenge that involves a team of specialists and subspecialists on fetal ultrasonography. The images in this review highlight normal cardiac rhythms as well as pathologic cases consistent with premature atrial and ventricular contractions, heart block, supraventricular tachycardia (VT), atrial flutter, and VT. In this review, the details of a variety of arrhythmias in fetuses were provided by M-mode and Doppler ultrasound/echocardiography with high-quality imaging, enhancing diagnostic accuracy. Moreover, an update on the intrauterine management and treatment of many arrhythmias is provided, focusing on improving outcomes to enable planned delivery and perinatal management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.