Arylalkylamine N-acetyltransferase (AANAT) catalyzes the reaction of serotonin with acetyl-CoA to form N-acetylserotonin and plays a major role in the regulation of the melatonin circadian rhythm in vertebrates. In the present study, the human cloned enzyme has been expressed in bacteria, purified, cleaved, and characterized. The specificity of the human enzyme toward substrates (natural as well as synthetic arylethylamines) and cosubstrates (essentially acyl homologs of acetylCoA) has been investigated. Peptide combinatorial libraries of tri-, tetra-, and pentapeptides with various amino acid compositions were also screened as potential sources of inhibitors. We report the findings of several peptides with low micromolar inhibitory potency. For activity measurement as well as for specificity studies, an original and rapid method of analysis was developed. The assay was based on the separation and detection of N-[ 3 H]acetylarylethylamine formed from various arylethylamines and tritiated acetyl-CoA, by means of high performance liquid chromatography with radiochemical detection. The assay proved to be robust and flexible, could accommodate the use of numerous synthetic substrates, and was successfully used throughout this study. We also screened a large number of pharmacological bioamines among which only one, tranylcypromine, behaved as a substrate. The synthesis and survey of simple arylethylamines also showed that AANAT has a large recognition pattern, including compounds as different as phenyl-, naphthyl-, benzothienyl-, or benzofuranyl-ethylamine derivatives. An extensive enzymatic study allowed us to pinpoint the amino acid residue of the pentapeptide inhibitor, S 34461, which interacts with the cosubstrate-binding site area, in agreement with an in silico study based on the available coordinates of the hAANAT crystal.Melatonin (5-methoxy-N-acetyltryptamine) is a pineal hormone that modulates a variety of endocrinological, neurophysiological, and behavioral functions in vertebrates (1). It is involved in the regulation of circadian rhythms and in the reproduction of photoperiodic species (2). The chronobiotic effects of melatonin in humans have been mainly studied in circadian rhythm sleep disorders (3). Moreover, alterations of the melatonin profiles have been reported in other biological rhythm disorders (3). Melatonin exerts its effects through at least three targets: 2 receptor subtypes, mt 1 and MT 2 , and a binding site, MT 3 (4). The two first ones have been cloned (5-6) and their pharmacological effects largely studied, and several specific and potent ligands (7-9) discovered. The MT 3 subtype is still a putative binding site under intensive research from purification attempts to pharmacological characterizations (10 -11). Since melatonin is implicated in several types of mild to severe pathologies, including mood disorders (3, 12), it is considered a valuable therapeutic target. Beside the classical search for agonists and antagonists of the melatonin receptors, a series of programs was launched t...
A mechanistic investigation of the inactivation of Escherichia coli glucosamine-6-phosphate synthase by N3-(4-methoxyfumaroyl)-L-2,3-diaminopropionate (FMDP) was undertaken. On the basis of the known participation of the N-terminal cysteine residue in this process [Chmara et al. (1986) Biochim. Biophys. Acta 870, 357; Badet et al. (1988) Biochemistry 27, 2282], the model reactions between FMDP and L-cysteine and between FMDP and the synthetic decapeptide Cys-Gly-Ile-Val-Gly-Ala-Ile-Ala-Gln-Arg, corresponding to the amino-terminal protein sequence, were studied. The results allowed us to propose a pathway that is in perfect agreement with the biochemical results: enzyme inactivation arose from Michael addition of glutamine binding site cysteine-1 on the fumaroyl double bond at the beta-position of the ester group. Upon denaturation under slightly alkaline conditions, this adduct underwent cyclization to a transient succinimide adduct, which rearranged into the stable 2-substituted 1,4-thiazin-3-one-5-carboxylate involving participation of the cysteine amino group. The tryptic radiolabeled peptides purified from [3H]FMDP-treated enzyme and resistant to Edman degradation coeluted with the products resulting from the model reaction between the synthetic decapeptide and the inhibitor.
Granulatimide and isogranulatimide, natural products isolated from an ascidian, were found to be abrogators of the cell cycle G2-M phase checkpoint by inhibition of Checkpoint 1 kinase (Chk1). In the course of structure-activity relationship studies on granulatimide analogues, we have synthesized a series of bis-imides, in which the imidazole moiety was replaced by an imide heterocycle. Various modifications have been introduced on one or both imide heterocycles, on the benzene ring, and on the indole nitrogen. Moreover, aza bis-imide analogues were synthesized in which the indole moiety was replaced by a 7-azaindole. Compared to those of granulatimide and isogranulatimide, the Chk1 inhibitory activities of some of the bis-imide carbazoles were stronger. In particular, 1,3,4,6-tetrahydro-10-hydroxy-7H-dipyrrolo[3,4-a:3,4-c]carbazole-1,3,4,6-tetraone 11 exhibited an IC(50) value on purified full length Chk1 of 2 nM, which makes it a more potent Chk1 inhibitor than granulatimide and isogranulatimide. To get an insight into the selectivity of this new family of compounds, the inhibitory activities of 1,3,4,6-tetrahydro-7H-dipyrrolo[3,4-a:3,4-c]carbazole-1,3,4,6-tetraone A have been evaluated on a panel of 15 kinases, the strongest inhibitory potency was found for Chk1. The inhibitory activities of compounds A, 5 and 11 toward Src tyrosine kinase and the cytotoxicity of various tumor cell lines were also evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.