Purpose To evaluate autologous matrix-induced chondrogenesis (AMIC) for isolated focal retropatellar cartilage lesions and the influence of patellofemoral (PF) anatomy on clinical outcomes at a minimum of 2-year follow-up. Methods Twenty-nine consecutive patients (31 knees) who underwent retropatellar AMIC with a mean age of 27.9 ± 11.0 years were evaluated at a follow-up averaging 4.1 ± 1.9 years (range, 2-8 years). Patient factors, lesion morphology, and patient-reported outcome measures, including Knee Injury and Osteoarthritis Outcome Score (KOOS), Tegner, Kujula score, and visual analogue scale (VAS) score were collected. PF anatomy was assessed on pre- and postoperative imaging, and subsequently correlated to outcome scores and failure to determine risk factors for poor outcome. Results At final follow-up, the AMIC graft failed in 4 cases (12.9%) at a mean follow-up of 21 ± 14.1 months. Patients with failed grafts had a significantly smaller patellar and Laurins’s PF angle than patients whose graft did not fail ( P = 0.008 and P = 0.004, respectively). Concomitant corrective surgery for patellar instability was performed in 29 knees (93.5%). Grafts that did not fail presented with an average Kujala score of 71.3 ± 16.9, KOOS Pain of 76.2 ± 16.6 and Tegner scores of 4.2 ± 1.8. The patellar angle was significantly associated with the patient’s satisfaction level ( r = 0.615; P < 0.001). Conclusion AMIC for retropatellar cartilage lesions in combination with concomitant corrective surgery for patellar instability results in low failure rate with satisfactory clinical outcome and patient satisfaction of almost 80% at mid-term follow-up. As most failures occurred in patients without concurrent tibial tubercle osteotomy and both a smaller patellar and Laurins’s PF angle were associated with less favorable outcome, this study supports the growing evidence for the need of unloading retropatellar cartilage repair, when indicated. Level of Evidence Case series; level of evidence, 4.
Purpose Recent data suggest that individual morphologic factors should be respected to restore preoperative patellofemoral alignment and thus reduce the likelihood of anterior knee pain. The goal of this study was to investigate the effect of excessive femoral torsion (FT) on clinical outcome of TKA. Methods Patients who underwent TKA and complete preoperative radiographic evaluation including a long-leg radiograph and CT scan were included. 51 patients showed increased FT of > 20° and were matched for age/sex to 51 controls (FT < 20°). Thirteen patients were lost to follow-up. Thirty-eight matched pairs were compared after a 2 year follow-up clinically (Kujala and patellofemoral score for TKA) and radiographically (FT, frontal leg axis, TT-TG, patellar thickness, patellar tilt, and lateral displacement of patella). Functional alignment of TKA was performed (hybrid-technique). All patellae were denervated but no patella was resurfaced. Results There was no significant difference between clinical scores two years after surgery between patients with normal and excessive FT (n.s.). Kujala score was 64.3 ± 16.7 versus 64.8 ± 14.4 (n.s.), and patellofemoral score for TKA was 74.3 ± 21 versus 78.5 ± 20.7 (n.s.) for increased FT group and control group, respectively. There was no correlation between preoperative FT and clinical scores. Other radiographic parameters were similar between both groups. No correlations between clinical outcomes and preoperative/postoperative frontal leg axis or total leg axis correction were found (n.s.). Conclusion If the leg axis deformity is corrected to a roughly neutral alignment during cemented TKA, including patellar denervation, then excessive FT was not associated with patellofemoral pain or instability. Level of evidence. Prospective comparative study, level II.
Background: Bone tunnel enlargement after single-bundle anterior cruciate ligament reconstruction remains an unsolved problem that complicates revision surgery. Hypothesis: Positioning of an osteoconductive scaffold at the femoral tunnel aperture improves graft-to-bone incorporation and thereby decreases bone tunnel widening. Study Design: Randomized controlled trial; Level of evidence, 1. Methods: In a 1:1 ratio, 56 patients undergoing primary anterior cruciate ligament reconstruction were randomized to receive femoral fixation with cortical suspension fixation and secondary press-fit fixation at the tunnel aperture of the tendon graft only (control) or with augmentation by an osteoconductive scaffold (intervention). Adverse events, patient-reported outcomes, and passive knee stability were recorded over 2 years after the index surgery. Three-dimensional bone tunnel widening was assessed using computed tomography at the time of surgery and 4.5 months and 1 year postoperatively. Results: The intervention group exhibited a similar number of adverse events as the control group (8 vs 10; P = .775) including 2 partial reruptures in both groups. The approach was feasible, although 1 case was encountered where the osteoconductive scaffold was malpositioned without adversely affecting the patient’s recovery. There was no difference between the intervention and control groups in femoral bone tunnel enlargement, as expressed by the relative change in tunnel volume from surgery to 4.5 months (mean ± SD, 36% ± 25% vs 40% ± 25%; P = .644) and 1 year (19% ± 20% vs 17% ± 25%; P =.698). Conclusion: Press-fit graft fixation with an osteoconductive scaffold positioned at the femoral tunnel aperture is safe but does not decrease femoral bone tunnel enlargement at postoperative 1 year. Registration: NCT03462823 ( ClinicalTrials.gov identifier).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.