Mice specifically overexpressing TIMP-1 in osteoblasts have been generated to investigate the role of MMPs in bone in vivo. These mice displayed increased trabecular bone volume and decreased bone turnover. This model provides evidence of the role played by the MMPs in bone remodeling and balance.Introduction: Although it has been suggested that the matrix metalloproteinases (MMPs) may play a role in initiating the bone resorption process in vitro, there is no evidence that they play any role in in vivo bone maintenance. Materials and Methods:We used an artificial promoter specifically driving cells of the osteoblastic lineage to overexpress the tissue inhibitor of MMPs (TIMP-1) cDNA in mice. Densitometric analysis, using DXA and pQCT, and static and dynamic histomorphometry were used to evaluate the bone phenotype both in male and female transgenic mice. We evaluated osteoblastic differentiation using a primary osteoblast culture and osteoclast activity using an ex vivo organ culture. Results and Conclusion:We showed that at 1 and 2.5 months of age, only the female mice exhibited a bone phenotype. These mice displayed specific increases in the BMD and bone volume of trabecular bone. This increase was accompanied by decreased trabecular separation, suggesting a decrease in bone resorption. Using an ex vivo resorption assay, we demonstrated that parathyroid hormone (PTH)-stimulated bone resorption was reduced in these mice. Evaluation of the bone histomorphometric dynamic parameters showed that the mineralizing surfaces and bone formation rate were both reduced. There was no change in the mineralization lag time or number of osteocyte lacunae. Using primary osteoblast culture and molecular analysis, we showed that the differentiation and function of osteoblasts from transgenic mice were normal, but that the ex vivo formation of mineralized nodules was delayed. This model is the first to show that in vivo MMPs play a role in bone remodeling and bone balance. Moreover, our data suggest that MMP activity could be involved in the hormonal regulation of bone resorption by osteoblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.