SummaryIn many streptococci, competence for natural DNA transformation is regulated by the Rgg-type regulator ComR and the pheromone ComS, which is sensed intracellularly. We compared the ComRS systems of four model streptococcal species using in vitro and in silico approaches, to determine the mechanism of the ComRS-dependent regulation of competence. In all systems investigated, ComR was shown to be the proximal transcriptional activator of the expression of key competence genes. Efficient binding of ComR to DNA is strictly dependent on the presence of the pheromone (C-terminal ComS octapeptide), in contrast with other streptococcal Rgg-type regulators. The 20 bp palindromic ComR-box is the minimal genetic requirement for binding of ComR, and its sequence directly determines the expression level of genes under its control. Despite the apparent speciesspecific specialization of the ComR-ComS interaction, mutagenesis of ComS residues from Streptococcus thermophilus highlighted an unexpected permissiveness with respect to its biological activity. In agreement, heterologous ComS, and even primary sequence-unrelated, casein-derived octapeptides, were able to induce competence development in S. thermophilus. The lack of stringency of ComS sequence suggests that competence of a specific Streptococcus species may be modulated by other streptococci or by non-specific nutritive oligopeptides present in its environment.
We report in this article an extensive structure-activity relationships (SAR) study with 58 thiophen-2-yl-1,2,4-oxadiazoles as inhibitors of EthR, a transcriptional regulator controling ethionamide bioactivation in Mycobacterium tuberculosis. We explored the replacement of two key fragments of the starting lead BDM31343. We investigated the potency of all analogues to boost subactive doses of ethionamide on a phenotypic assay involving M. tuberculosis infected macrophages and then ascertained the mode of action of the most active compounds using a functional target-based surface plasmon resonance assay. This process revealed that introduction of 4,4,4-trifluorobutyryl chain instead of cyanoacetyl group was crucial for intracellular activity. Replacement of 1,4-piperidyl by (R)-1,3-pyrrolidyl scaffold did not enhance activity but led to improved pharmacokinetic properties. Furthermore, the crystal structures of ligand-EthR complexes were consistent with the observed SAR. In conclusion, we identified EthR inhibitors that boost antibacterial activity of ethionamide with nanomolar potency while improving solubility and metabolic stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.