Oligomer-based DNA Affymetrix GeneChips representing about one-third of Arabidopsis (Arabidopsis thaliana) genes were used to profile global gene expression in a single cell type, guard cells, identifying 1309 guard cell–expressed genes. Highly pure preparations of guard cells and mesophyll cells were isolated in the presence of transcription inhibitors that prevented induction of stress-inducible genes during cell isolation procedures. Guard cell expression profiles were compared with those of mesophyll cells, resulting in identification of 64 transcripts expressed preferentially in guard cells. Many large gene families and gene duplications are known to exist in the Arabidopsis genome, giving rise to redundancies that greatly hamper conventional genetic and functional genomic analyses. The presented genomic scale analysis identifies redundant expression of specific isoforms belonging to large gene families at the single cell level, which provides a powerful tool for functional genomic characterization of the many signaling pathways that function in guard cells. Reverse transcription–PCR of 29 genes confirmed the reliability of GeneChip results. Statistical analyses of promoter regions of abscisic acid (ABA)–regulated genes reveal an overrepresented ABA responsive motif, which is the known ABA response element. Interestingly, expression profiling reveals ABA modulation of many known guard cell ABA signaling components at the transcript level. We further identified a highly ABA-induced protein phosphatase 2C transcript, AtP2C-HA, in guard cells. A T-DNA disruption mutation in AtP2C-HA confers ABA-hypersensitive regulation of stomatal closing and seed germination. The presented data provide a basis for cell type–specific genomic scale analyses of gene function.
Early studies have shown that cesium (Cs + ) competes with the macronutrient potassium (K + ) for uptake by plants. The present study investigates the effect of K + supply on Cs + uptake and translocation in Arabidopsis thaliana. Taking advantage of the frequent use of this model plant in + concentration above 100 µM. We propose that non-selective cation channels, likely involved in Cs + uptake under K + -sufficient conditions according to previous studies, could also mediate Cs + uptake under K + -starvation and high Cs + concentrations. Finally, evidences for Cs + translocation mediated by K + channels are discussed.
Hydathodes are small organs located on the leaf margins of all vascular plants. They release excess xylem sap through guttation when stomata are closed or when the humidity level is high. Many promoter analyses have suggested other hydathode functions in metabolite transport and auxin metabolism, but experimental demonstration is still lacking. Here, we compared the transcriptomic and metabolomic features of mature Arabidopsis hydathodes to the leaf blade. 1460 differentially-expressed genes were identified revealing that genes related to auxin metabolism, transport, stress, DNA, plant cell wall, RNA or wax were on average more expressed in hydathodes. On the other hand, genes involved in glucosinolate metabolism, sulfation pathway, metal handling or photosynthesis were downregulated in hydathodes. In hydathodes, there are an increased expression of auxin transcriptional regulators and biosynthetic genes, a lower expression of auxin transport genes and a differential expression of genes related to its vacuolar storage that is consistent with increased contents of free and conjugated auxin. We also found that ca. 78% of the total content of 52 xylem sap metabolites were removed from guttation fluid at the hydathode level. Using reverse genetics, we showed that the capture of nitrate and phosphate in the guttation fluid relies on theNRT2.1andPHT1;4transporters, respectively. Thus, hydathodes absorb a significant part of xylem sap nutrients, limiting the loss of valuable chemicals during guttation. Our transcriptomic and metabolomic analyses reveal an organ with its own transcriptomic and physiological identity and highlight hydathode biological processes that may impact the whole plant.One sentence summaryTranscriptome and physiological analysis of mature and healthy hydathodes of Arabidopsis demonstrates that those organs are sites of intense auxin metabolism and nutrient scavenging
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.