Macrophomina phaseolina is a generalist soil-borne fungus present all over the world. It cause diseases such as stem and root rot, charcoal rot and seedling blight. Under high temperatures and low soil moisture, this fungus can cause substantial yield losses in crops such as soybean, sorghum and groundnut. The wide host range and high persistence of M. phaseolina in soil as microsclerotia make disease control challenging. Therefore, understanding the basis of the pathogenicity mechanisms as well as its interactions with host plants is crucial for controlling the pathogen. In this work, we aim to describe the general characteristics and pathogenicity mechanisms of M. phaseolina, as well as the hosts defense response. We also review the current methods and most promising forecoming ones to reach a responsible control of the pathogen, with minimal impacts to the environment and natural resources.
Macrophomina phaseolina is a soil-borne fungal pathogen with a wide host range that causes charcoal rot in soybean [Glycine max (L.) Merr.]. Control of the disease is a challenge, due to the absence of genetic resistance and effective chemical control. Alternative or complementary measures are needed, such as the use of biological control agents, in an integrated approach. Several studies have demonstrated the role of arbuscular mycorrhizal fungi (AMF) in enhancing plant resistance or tolerance to biotic stresses, decreasing the symptoms and pressure caused by various pests and diseases, including M. phaseolina in soybean. However, the specific contribution of AMF in the regulation of the plant response to M. phaseolina remains unclear. Therefore, the objective of the present study was to investigate, under strict in-vitro culture conditions, the global transcriptional changes in roots of premycorrhized soybean plantlets challenged by M. phaseolina (+AMF+Mp) as compared with nonmycorrhizal soybean plantlets (-AMF+Mp). MapMan software was used to distinguish transcriptional changes, with special emphasis on those related to plant defense responses. Soybean genes identified as strongly upregulated during infection by the pathogen included pathogenesis-related proteins, disease-resistance proteins, transcription factors, and secondary metabolism-related genes, as well as those encoding for signaling hormones. Remarkably, the +AMF+Mp treatment displayed a lower number of upregulated genes as compared with the -AMF+Mp treatment. AMF seemed to counteract or balance costs upon M. phaseolina infection, which could be associated to a negative impact on biomass and seed production. These detailed insights in soybean-AMF interaction help us to understand the complex underlying mechanisms involved in AMF-mediated biocontrol and support the importance of preserving and stimulating the existing plant-AMF associates, via adequate agricultural practices, to optimize their agro-ecological potential.
SARS-CoV-2 variants with concerning characteristics have emerged since the end of 2020. Surveillance of SARS-CoV-2 variants was performed on a total of 4,851 samples from the capital city and 10 provinces of Argentina, during 51 epidemiological weeks (EWs) that covered the end of the first wave and the ongoing second wave of the COVID-19 pandemic in the country (EW 44/2020 to EW 41/2021). The surveillance strategy was mainly based on Sanger sequencing of a Spike coding region that allows the identification of signature mutations associated with variants. In addition, whole-genome sequences were obtained from 637 samples. The main variants found were Gamma and Lambda, and to a lesser extent, Alpha, Zeta, and Epsilon, and more recently, Delta. Whereas, Gamma dominated in different regions of the country, both Gamma and Lambda prevailed in the most populated area, the metropolitan region of Buenos Aires. The lineages that circulated on the first wave were replaced by emergent variants in a term of a few weeks. At the end of the ongoing second wave, Delta began to be detected, replacing Gamma and Lambda. This scenario is consistent with the Latin American variant landscape, so far characterized by a concurrent increase in Delta circulation and a stabilization in the number of cases. The cost-effective surveillance protocol presented here allowed for a rapid response in a resource-limited setting, added information on the expansion of Lambda in South America, and contributed to the implementation of public health measures to control the disease spread in Argentina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.