Leukocyte migration from the blood into tissues is pivotal in immune homeostasis and in inflammation. During the multistep extravasation cascade, endothelial selectins (P-and E-selectin) and vascular adhesion protein-1 (VAP-1), a cell-surfaceexpressed oxidase, are important in tethering and rolling. Here, we studied the signaling functions of the catalytic activity of VAP-1. Using human endothelial cells transfected with wild-type VAP-1 and an enzymatically inactive VAP-1 point mutant, we show that transcription and translation of E-and P-selectins are induced through the enzymatic activity of VAP-1. Moreover, use of VAP-1-deficient animals and VAP-1-deficient animals carrying the human VAP-1 as a transgene show a VAP-enzyme activity-dependent induction of P-selectin in vivo. Up-regulation of P-selectin was found both in high endothelial venules in lymphoid tissues and in flat-walled vessels in noninflamed tissues. VAP-1 activity in vivo led to in- IntroductionCoordinated function of the multistep leukocyte extravasation cascade is a prerequisite for leukocyte emigration from the blood into the tissue. Many adhesion and signaling molecules have well-established roles in this process. 1,2 On endothelial cells, selectins (P-selectin [CD62P] and E-selectin [CD62E]) mediate tethering of bloodborne cells to vascular endothelium, and the subsequent rolling along the endothelial lining in a sheardependent manner. 3 The rolling cells can be exposed to activating stimuli, such as chemokines, which can trigger firm, integrindependent adhesion of the leukocytes in the vessel. Finally, the leukocytes diapedese through the vessel wall using adhesion molecules from immunoglobulin and other superfamilies as well as local protease activity.In addition to these well-established interplayers, other molecules are involved in leukocyte trafficking. Among these, enzymes expressed on the cell surface that have their catalytic domains outside the plasma membrane (ectoenzymes) have emerging roles in leukocyte migration. 4 Vascular adhesion protein-1 (VAP-1, also known as amine oxidase copper containing-3 [AOC3]) is an ectoenzyme that belongs to the specific subgroup of oxidases known as semicarbazide-sensitive amine oxidases (SSAOs). 5,6 It catalyzes a reaction in which a primary amine is oxidatively deaminated into an aldehyde, and then hydrogen peroxide and ammonium are released. 7,8 VAP-1/SSAO is a bifunctional molecule that can support leukocyte adhesion under shear conditions via enzymeactivity-dependent and enzyme-activity-independent ways. 4 Monoclonal anti-VAP-1 antibodies that do not block its oxidase activity effectively block lymphocyte and granulocyte binding to endothelial cells in vitro and in vivo. Small-molecule SSAO enzyme inhibitors, on the other hand, are equally effective in perturbing leukocyte-endothelial contacts in vitro and in vivo. [9][10][11][12][13][14] The ability of the oxidase reaction to regulate the expression and/or function of other molecules involved in the emigration process is largely unknown.We h...
Objective. Leukocyte traffic from the blood to the joints is crucial in the pathogenesis of arthritis. A bifunctional endothelial cell-surface glycoprotein, AOC3 (amine oxidase, copper-containing 3; also known as vascular adhesion protein 1), has both adhesive and enzymatic properties. We undertook this study to determine the contribution of AOC3 and its oxidase activity to leukocyte trafficking into inflamed joints in vivo.Methods. We used gene-modified animals, molecular modeling, an AOC3 enzyme inhibitor, oxidase assays, and arthritis models (adjuvant-induced arthritis [AIA] in rats and anti-type II collagen antibodyinduced arthritis in mice) to dissect the importance of AOC3 in vivo.Results. The AOC3 inhibitor fitted well with a covalent binding mode into the active site of the AOC3 crystal structure. It selectively blocked the oxidase activity of AOC3 in enzyme assays. Intraperitoneal and oral administration of the AOC3 inhibitor significantly ameliorated rat AIA. In anti-type II collagen antibodyinduced arthritis in mice, the AOC3 inhibitor also improved the outcome of the joint inflammation. The acute semicarbazide-sensitive amine oxidase blockade by the inhibitor had even more pronounced effects than genetic deletion of AOC3. Enzymatic analyses showed that the inhibitor also blocked 2 other structurally very closely related AOCs, but not any of more than 100 other enzymes tested.Conclusion. These are the first data to demonstrate that the enzymatic activity of the atypical endothelial adhesion molecule AOC3, and possibly that of other closely related ecto-oxidases, is crucial for leukocyte exit from the vessels in inflamed joints in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.