The correct representation of the relevant properties of a system is an essential requirement for the effective use and wide adoption of model-based practices in industry. Uncertainty is one of the inherent properties of any measurement or estimation that is obtained in any physical setting; as such, it must be considered when modeling software systems that deal with real data. Although a few modeling languages enable the representation of measurement uncertainty, these aspects are not normally incorporated into their type systems. Therefore, operating with uncertain values and propagating their uncertainty become cumbersome processes, which hinder their realization in real environments. This paper proposes an extension of OCL/UML primitive datatypes that enables the representation of the uncertainty that comes from physical measurements or user estimates into the models, together with an algebra of operations that are defined for the values of these types.
PurposeUbiquitous web applications (UWA) are a new type of web applications which are accessed in various contexts, i.e. through different devices, by users with various interests, at anytime from anyplace around the globe. For such full‐fledged, complex software systems, a methodologically sound engineering approach in terms of model‐driven engineering (MDE) is crucial. Several modeling approaches have already been proposed that capture the ubiquitous nature of web applications, each of them having different origins, pursuing different goals and providing a pantheon of concepts. This paper aims to give an in‐depth comparison of seven modeling approaches supporting the development of UWAs.Design/methodology/approachThis methodology is conducted by applying a detailed set of evaluation criteria and by demonstrating its applicability on basis of an exemplary tourism web application. In particular, five commonly found ubiquitous scenarios are investigated, thus providing initial insight into the modeling concepts of each approach as well as to facilitate their comparability.FindingsThe results gained indicate that many modeling approaches lack a proper MDE foundation in terms of meta‐models and tool support. The proposed modeling mechanisms for ubiquity are often limited, since they neither cover all relevant context factors in an explicit, self‐contained, and extensible way, nor allow for a wide spectrum of extensible adaptation operations. The provided modeling concepts frequently do not allow dealing with all different parts of a web application in terms of its content, hypertext, and presentation levels as well as their structural and behavioral features. Finally, current modeling approaches do not reflect the crosscutting nature of ubiquity but rather intermingle context and adaptation issues with the core parts of a web application, thus hampering maintainability and extensibility.Originality/valueDifferent from other surveys in the area of modeling web applications, this paper specifically considers modeling concepts for their ubiquitous nature, together with an investigation of available support for MDD in a comprehensive way, using a well‐defined as well as fine‐grained catalogue of more than 30 evaluation criteria.
Uncertainty is an inherent property of any measure or estimation performed in any physical setting, and therefore it needs to be considered when modeling systems that manage real data. Although several modeling languages permit the representation of measurement uncertainty for describing certain system attributes, these aspects are not normally incorporated into their type systems. Thus, operating with uncertain values and propagating uncertainty are normally cumbersome processes, difficult to achieve at the model level. This paper proposes an extension of OCL and UML datatypes to incorporate data uncertainty coming from physical measurements or user estimations into the models, along with the set of operations defined for the values of these types.
This paper provides a comprehensive overview and analysis of research work on how uncertainty is currently represented in software models. The survey presents the definitions and current research status of different proposals for addressing uncertainty modeling, and introduces a classification framework that allows to compare and classify existing proposals, analyse their current status and identify new trends. In addition, we discuss possible future research directions, opportunities and challenges.A fundamental characteristic of software models is their ability to represent the relevant characteristics of the system under study, at the appropriate level of abstraction. Software models were initially conceived to design and develop general Information Technology (IT) systems, such as financial applications, enterprise databases or component-based systems, and have proven to be excellent artefacts for representing the basic structure and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.