SummaryAnalysis of the genome sequence of Neisseria meningitidis strain MC58 revealed 65 genes associated with simple sequence repeats. Experimental evidence of phase variation exists for only 14 of these 65 putatively phase variable genes. We investigated the phase variable potential of the remaining 51 genes. The repeat tract associated with 20 of these 51 genes was sequenced in 26 genetically distinct strains. This analysis provided circumstantial evidence for or against the phase variability of the candidate genes, based on the sequence and the length of the repeated motif. These predictions of phase variability were substantiated for three of these candidate genes using colony immunoblotting or b b b b -galactosidase as a reporter. This investigation identified a novel phase variable gene (NMB1994 or nadA ) associated with a repeat tract (TAAA) not previously reported to be associated with phase variable genes in N. meningitidis . Analysis of the nadA transcript revealed that the repeat tract was located upstream of the putative ----35 element of the nadA promoter. Semiquantitative RT-PCR showed that variation in the number of repeats was associated with changes in the level of expression of nadA , findings consistent with a model whereby the variable number of (TAAA) repeats modulates the promoter strength.
In the teleost fish, physiological and biochemical studies suggest that glucocorticoids regulate both salt balance and metabolic activities. In mammals, however, these functions are divided between glucocorticoids and mineralocorticoids. In mammals, separate receptors for these two classes of steroid hormone have been cloned and sequenced. To begin to understand the regulation in fish of the vital processes ascribed to glucocorticoids, we have cloned, sequenced, expressed, and studied the steroid-binding and transcriptional activation capabilities of the rainbow trout (Onchorhynchus mykiss) glucocorticoid receptor. Northern blot analysis shows a single rainbow trout GR messenger RNA species of 7.5 kilobases expressed in gill, intestine, skeletal muscle, kidney, and liver. The trout GR 2274-nucleotide coding sequence provides for a protein of 758 amino acids, with appropriate similarities to mammalian GR, with one striking exception. As in other members of the steroid/thyroid/retinoid receptor family, the DNA-binding domain contains two putative zinc fingers. These have high homology with those of other GRs. However, between the zinc fingers in the trout GR are found 9 more amino acids than are seen in mammalian GRs, raising questions as to the functional form of the fish, as opposed to the mammalian, GR. It has been proposed that as fish appear to use glucocorticoids for both metabolic and salt control, presumably through a single GR, GR would prove to be the evolutionary precursor to mammalian GR and mineralocorticoid receptor (MR). Computer analysis of the known sequences of GRs and MRs, however, suggests that the fish GR did not give rise to the MR of higher animals, but that both subfamilies of receptor arose from some earlier gene.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a small conductance chloride ion channel that may interact directly with other channels including the epithelial sodium channel (ENaC). CFTR is known to be more abundant in the airway epithelium during the second trimester of human development than after birth. This could be a consequence of the change in function of the respiratory epithelium from chloride secretion to sodium absorption near term. Alternatively it might reflect an additional role for CFTR in the developing airway epithelium. Though the lung epithelia of CF fetuses and infants rarely show gross histological abnormalities, there is often evidence of inflammation. Our aim was to establish whether CFTR expression levels correlated with specific developmental stages or differentiated functions in the ovine fetal lung. We evaluated CFTR expression using a quantitative assay of mRNA at 14 time points through gestation and showed highest levels at the start of the second trimester followed by a gradual decline through to term. In contrast, ENaC expression increased from the start of the third trimester. These results support a role for CFTR in differentiation of the respiratory epithelium and suggest that its expression levels are not merely reflecting major changes in the sodium/chloride bulk flow close to term. These observations may have significant implications for the likely success of CF gene therapy in the postnatal lung.
The CFTR (cystic fibrosis transmembrane conductance regulator) gene shows a complex pattern of expression with tissue-specific and temporal regulation. However, the genetic elements and transcription factors that control CFTR expression are largely unidentified. The CFTR promoter does not confer tissue specificity on gene expression, suggesting that there are regulatory elements outside the upstream region. Analysis of potential regulatory elements defined as DNase 1-hypersensitive sites within introns of the gene revealed multiple predicted binding sites for the HNF1alpha (hepatocyte nuclear factor 1alpha) transcription factor. HNF1alpha, which is expressed in many of the same epithelial cell types as CFTR and shows similar differentiation-dependent changes in gene expression, bound to these sites in vitro. Overexpression of heterologous HNF1alpha augmented CFTR transcription in vivo. In contrast, antisense inhibition of HNF1 alpha transcription decreased the CFTR mRNA levels. Hnf1 alpha knockout mice showed lower levels of CFTR mRNA in their small intestine in comparison with wild-type mice. This is the first report of a transcription factor, which confers tissue specificity on the expression of this important disease-associated gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.