Cardiac safety remains the leading cause of drug development discontinuation. We developed a human cardiomyocyte-based model that has the potential to provide a predictive preclinical approach for simultaneously predicting drug-induced inotropic and pro-arrhythmia risk.Methods: Adult human primary cardiomyocytes from ethically consented organ donors were used to measure contractility transients. We used measures of changes in contractility parameters as markers to infer both drug-induced inotropic effect (sarcomere shortening) and pro-arrhythmia (aftercontraction, AC); contractility escape (CE); time to 90% relaxation (TR90). We addressed the clinical relevance of this approach by evaluating the effects of 23 torsadogenic and 10 non-torsadogenic drugs. Each drug was tested separately at four multiples of the free effective therapeutic plasma concentration (fETPC).Results: Human cardiomyocyte-based model differentiated between torsadogenic and non-torsadogenic drugs. For example, dofetilide, a torsadogenic drug, caused ACs and increased TR90 starting at 10-fold the fETPC, while CE events were observed at the highest multiple of fETPC (100-fold). Verapamil, a non-torsadogenic drug, did not change TR90 and induced no AC or CE up to the highest multiple of fETPCs tested in this study (222-fold). When drug pro-arrhythmic activity was evaluated at 10-fold of the fETPC, AC parameter had excellent assay sensitivity and specificity values of 96 and 100%, respectively. This high predictivity supports the translational safety potential of this preparation and of the selected marker. The data demonstrate that human cardiomyocytes could also identify drugs associated with inotropic effects. hERG channel blockers, like dofetilide, had no effects on sarcomere shortening, while multi-ion channel blockers, like verapamil, inhibited sarcomere shortening.Conclusions: Isolated adult human primary cardiomyocytes can simultaneously predict risks associated with inotropic activity and pro-arrhythmia and may enable the generation of reliable and predictive data for assessing human cardiotoxicity at an early stage in drug discovery.
Diabetes is a multi-organ disease and diabetic cardiomyopathy can result in heart failure, which is a leading cause of morbidity and mortality in diabetic patients. In the liver, insulin resistance contributes to hyperglycaemia and hyperlipidaemia, which further worsens the metabolic profile. Defects in mTOR signalling are believed to contribute to metabolic dysfunctions in diabetic liver and hearts, but evidence is missing that mTOR activation is causal to the development of diabetic cardiomyopathy. This study shows that specific mTORC1 inhibition by PRAS40 prevents the development of diabetic cardiomyopathy. This phenotype was associated with improved metabolic function, blunted hypertrophic growth and preserved cardiac function. In addition PRAS40 treatment improves hepatic insulin sensitivity and reduces systemic hyperglycaemia in obese mice. Thus, unlike rapamycin, mTORC1 inhibition with PRAS40 improves metabolic profile in diabetic mice. These findings may open novel avenues for therapeutic strategies using PRAS40 directed against diabetic-related diseases.
STIM1 plays a crucial role in Ca(2+) homeostasis, particularly in replenishing the intracellular Ca(2+) store following its depletion. In cardiomyocytes, the Ca(2+) content of the sarcoplasmic reticulum must be tightly controlled to sustain contractile activity. The presence of STIM1 in cardiomyocytes suggests that it may play a role in regulating the contraction of cardiomyocytes. The aim of the present study was to determine how STIM1 participates in the regulation of cardiac contractility. Atomic force microscopy revealed that knocking down STIM1 disrupts the contractility of cardiomyocyte-derived HL-1 cells. Ca(2+) imaging also revealed that knocking down STIM1 causes irregular spontaneous Ca(2+) oscillations in HL-1 cells. Action potential recordings further showed that knocking down STIM1 induces early and delayed afterdepolarizations. Knocking down STIM1 increased the peak amplitude and current density of T-type voltage-dependent Ca(2+) channels (T-VDCC) and shifted the activation curve toward more negative membrane potentials in HL-1 cells. Biotinylation assays revealed that knocking down STIM1 increased T-VDCC surface expression and co-immunoprecipitation assays suggested that STIM1 directly regulates T-VDCC activity. Thus, STIM1 is a negative regulator of T-VDCC activity and maintains a constant cardiac rhythm by preventing a Ca(2+) overload that elicits arrhythmogenic events.
Human keratinocytes grown in co-culture with fibroblast feeder cells have an extended in vitro lifespan and delayed accumulation of the tumor suppressor protein p16 INK4a when compared to the same cells grown on tissue culture plastic alone. Previous studies have indicated that human keratinocytes can be immortalized by telomerase activity alone when grown in co-culture with feeder cells, suggesting that loss of the p16 INK4a /Rb pathway is not required for immortalization. Using two independent human keratinocyte cell strains, we found that exogenous telomerase expression and co-culture with feeder cells results in efficient extension of lifespan without an apparent crisis. However, when these cells were transferred from the co-culture environment to plastic alone they experienced only a brief period of slowed growth before continuing to proliferate indefinitely. Examination of immortal cell lines demonstrated p16 INK4a promoter methylation had occurred in both the absence and presence of feeder cells. Reintroduction of p16 INK4a into immortal cell lines resulted in rapid growth arrest. Our results suggest that p16 INK4a /Rb-induced telomereindependent senescence, although delayed in the presence of feeders, still provides a proliferation barrier to human keratinocytes in this culture system and that extended culture of telomerase-transduced keratinocytes on feeders can lead to the methylation of p16 INK4a .
Effects of non-cardiac drugs on cardiac contractility can lead to serious adverse events. Furthermore, programs aimed at treating heart failure have had limited success and this therapeutic area remains a major unmet medical need. The challenges in assessing drug effect on cardiac contractility point to the fundamental translational value of the current preclinical models. Therefore, we sought to develop an adult human primary cardiomyocyte contractility model that has the potential to provide a predictive preclinical approach for simultaneously predicting drug-induced inotropic effect (sarcomere shortening) and generating multi-parameter data to profile different mechanisms of action based on cluster analysis of a set of 12 contractility parameters. We report that 17 positive and 9 negative inotropes covering diverse mechanisms of action exerted concentration-dependent increases and decreases in sarcomere shortening, respectively. Interestingly, the multiparametric readout allowed for the differentiation of inotropes operating via distinct mechanisms. Hierarchical clustering of contractility transient parameters, coupled with principal component analysis, enabled the classification of subsets of both positive as well as negative inotropes, in a mechanism-related mode. Thus, human cardiomyocyte contractility model could accurately facilitate informed mechanistic-based decision making, risk management and discovery of molecules with the most desirable pharmacological profile for the correction of heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.