In the zinc metallopeptidases produced by the genus Bacillus, an active site histidine has been proposed to either stabilize the transition state in catalysis by donating a hydrogen bond to the hydrated peptide (Matthews, B. W. (1988) Acc. Chem. Res. 21, 333-340) or to polarize a water molecule, which subsequently attacks the peptidyl bond (Mock, W. L., and Aksamawati, M. (1994) Biochem. J. 302, 57-68). Site-directed mutagenesis techniques have been used to change this residue in the zinc endopeptidase from Bacillus stearothermophillus to either phenylalanine or alanine. At pH 7.0, the kcat/Km values of the substrate leucine enkephalin for the phenylalanine and alanine mutants were reduced by factors of 430- and 500-fold, respectively, as compared with the wild-type enzyme, mostly due to changes in kcat. In addition, the enzymatic activities of the mutant enzymes showed little pH dependence in the alkaline range, unlike the wild-type enzyme. The mutations did not greatly alter the binding affinities of inhibitors containing sulfydryl groups to chelate the active site zinc, while those of inhibitors containing hydroxamate or carboxylate zinc-chelating groups were increased between 80- and 250-fold. The largest change in the binding affinity of an inhibitor (> 5 orders of magnitude) was found with the proposed transition state mimic, phosphoramidon. The results are generally in agreement with x-ray crystallography studies and favor the involvement of the active site histidine in transition state binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.