Fish satellite cells have been extracted from various species, but the myogenic characteristics of these cells in culture remain largely unknown. We show here that 60%-70% of the adherent cells are myogenic based on their immunoreactivity for the myogenic regulatory factor MyoD. In DMEM containing 10% fetal calf serum (FCS), trout myoblasts display rapid expression of myogenin (18% of myogenin-positive cells at day 2) combined with rapid fusion into myotubes (50% of myogenin-positive nuclei and 30% nuclei in myosin heavy chain [MyHC]-positive cells at day 7). These kinetics of differentiation are reminiscent of the behavior of fetal myoblasts in mammals. However, not all the myogenic cells differentiate; this subpopulation of cells might correspond to the previously named "reserve" cells. More than 90% of the BrdU-positive cells are also positive for MyoD, indicating that myogenic cells proliferate in vitro. By contrast, less than 1% of myogenin-positive cells are positive for BrdU suggesting that myogenin expression occurs only in post-mitotic cells. In order to maximize either the proliferation or the differentiation of cells, we have defined new culture conditions based on the use of a proliferation medium (F10+10%FCS) and a differentiation medium (DMEM+2%FCS). Three days after switching the medium, the differentiation index (% MyHC-positive nuclei) is 40-fold higher than that in proliferation medium, whereas the proliferation index (% BrdU-positive nuclei) is three-fold lower. Stimulation of cell proliferation by insulin-like growth factor 1 (IGF1), IGF2, and FGF2 is greater in F10 medium. The characterization of these extracted muscle cells thus validates the use of this in vitro system of myogenesis in further studies of the myogenic activity of growth factors in trout.
The muscle growth in mammals is regulated by several growth factors including myostatin (MSTN), a member of the transforming growth factor-beta (TGF-beta) superfamily. To date, it is unknown in fish whether MSTN could have any effect on proliferation or differentiation of myogenic cells. Using culture of trout satellite cells, we showed that mstn1a and mstn1b mRNA are expressed in myoblasts and that their expression decreased in differentiating myoblasts. We also demonstrated that a treatment with huMSTN decreased the proliferation of IGF1-stimulated myoblasts in a dose-dependent manner. By contrast, treatment of myoblasts with 100 nM of huMSTN for three days, did not affect the percentage of positive cells for myogenin neither the percentage of nuclei in myosin positive cells. Moreover, our results clearly indicated that huMSTN treatment had no effect on MyoD and myogenin protein levels, which suggests that huMSTN did not strongly affect MyoD activity. In conclusion, we showed that huMSTN inhibited proliferation but not differentiation of trout myoblasts, probably resulting from a lack of huMSTN effect on MyoD activity. Altogether, these results show high interspecies differences in the function of MSTN.
The formation of new myofibers in vertebrates occurs by myoblast fusion and requires fusogenic activity of the musclespecific membrane protein myomaker. Here, using in silico (BLAST) genome analyses, we show that the myomaker gene from trout includes 14 minisatellites, indicating that it has an unusual structure compared with those of other animal species. We found that the trout myomaker gene encodes a 434 -amino acid (aa) protein, in accordance with its apparent molecular mass (ϳ40 kDa) observed by immunoblotting. The first half of the trout myomaker protein (1-220 aa) is similar to the 221-aa mouse myomaker protein, whereas the second half (222-234 aa) does not correspond to any known motifs and arises from two protein extensions. The first extension (ϳ70 aa) apparently appeared with the radiation of the bony fish clade Euteleostei, whereas the second extension (up to 236 aa) is restricted to the superorder Protacanthopterygii (containing salmonids and pike) and corresponds to the insertion of minisatellites having a length of 30 nucleotides. According to gene expression analyses, trout myomaker expression is consistently associated with the formation of new myofibers during embryonic development, postlarval growth, and muscle regeneration. Using cell-mixing experiments, we observed that trout myomaker has retained the ability to drive the fusion of mouse fibroblasts with C2C12 myoblasts. Our work reveals that trout myomaker has fusogenic function despite containing two protein extensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.