The tumor-homing property of mesenchymal stem cells (MSC) has lead to their use as delivery vehicles for therapeutic genes. The application of the sodium iodide symporter (NIS) as therapy gene allows noninvasive imaging of functional transgene expression by (123)I-scintigraphy or PET-imaging, as well as therapeutic application of (131)I or (188)Re. Based on the critical role of the chemokine RANTES (regulated on activation, normal T-cell expressed and presumably secreted)/CCL5 secreted by MSCs in the course of tumor stroma recruitment, use of the RANTES/CCL5 promoter should allow tumor stroma-targeted expression of NIS after MSC-mediated delivery. Using a human hepatocellular cancer (HCC) xenograft mouse model (Huh7), we investigated distribution and tumor recruitment of RANTES-NIS-engineered MSCs after systemic injection by gamma camera imaging. (123)I-scintigraphy revealed active MSC recruitment and CCL5 promoter activation in the tumor stroma of Huh7 xenografts (6.5% ID/g (123)I, biological half-life: 3.7 hr, tumor-absorbed dose: 44.3 mGy/MBq). In comparison, 7% ID/g (188)Re was accumulated in tumors with a biological half-life of 4.1 hr (tumor-absorbed dose: 128.7 mGy/MBq). Administration of a therapeutic dose of (131)I or (188)Re (55.5 MBq) in RANTES-NIS-MSC-treated mice resulted in a significant delay in tumor growth and improved survival without significant differences between (131)I and (188)Re. These data demonstrate successful stromal targeting of NIS in HCC tumors by selective recruitment of NIS-expressing MSCs and by use of the RANTES/CCL5 promoter. The resulting tumor-selective radionuclide accumulation was high enough for a therapeutic effect of (131)I and (188)Re opening the exciting prospect of NIS-mediated radionuclide therapy of metastatic cancer using genetically engineered MSCs as gene delivery vehicles.
The tumor-homing property of mesenchymal stem cells (MSCs) allows targeted delivery of therapeutic genes into the tumor microenvironment. The application of sodium iodide symporter (NIS) as a theranostic gene allows noninvasive imaging of MSC biodistribution and transgene expression before therapeutic radioiodine application. We have previously shown that linking therapeutic transgene expression to induction of the chemokine CCL5/ RANTES allows a more focused expression within primary tumors, as the adoptively transferred MSC develop carcinoma-associated fibroblast-like characteristics. Although RANTES/CCL5-NIS targeting has shown efficacy in the treatment of primary tumors, it was not clear if it would also be effective in controlling the growth of metastatic disease. Methods: To expand the potential range of tumor targets, we investigated the biodistribution and tumor recruitment of MSCs transfected with NIS under control of the RANTES/ CCL5 promoter (RANTES-NIS-MSC) in a colon cancer liver metastasis mouse model established by intrasplenic injection of the human colon cancer cell line LS174t. RANTES-NIS-MSCs were injected intravenously, followed by 123 I scintigraphy, 124 I PET imaging, and 131 I therapy. Results: Results show robust MSC recruitment with RANTES/CCL5-promoter activation within the stroma of liver metastases as evidenced by tumor-selective iodide accumulation, immunohistochemistry, and real-time polymerase chain reaction. Therapeutic application of 131 I in RANTES-NIS-MSC-treated mice resulted in a significant delay in tumor growth and improved overall survival. Conclusion: This novel gene therapy approach opens the prospect of NIS-mediated radionuclide therapy of metastatic cancer after MSC-mediated gene delivery.
Currently, major limitations for the clinical application of adenovirus-mediated gene therapy are high prevalence of neutralizing antibodies, widespread expression of the coxsackie-adenovirus receptor (CAR), and adenovirus sequestration by the liver. In the current study, we used the sodium iodide symporter (NIS) as a theranostic gene to investigate whether coating of adenovirus with synthetic dendrimers could be useful to overcome these hurdles in order to develop adenoviral vectors for combination of systemic oncolytic virotherapy and NIS-mediated radiotherapy. Methods: We coated replication-deficient (Ad5-CMV/NIS) (CMV is cytomegalovirus) and replication-selective (Ad5-E1/AFP-E3/NIS) adenovirus serotype 5 carrying the hNIS gene with poly(amidoamine) dendrimers generation 5 (PAMAM-G5) in order to investigate transduction efficacy and altered tropism of these coated virus particles by 123 I scintigraphy and to evaluate their therapeutic potential for systemic radiovirotherapy in a liver cancer xenograft mouse model. Results: After dendrimer coating, Ad5-CMV/NIS demonstrated partial protection from neutralizing antibodies and enhanced transduction efficacy in CAR-negative cells in vitro. In vivo 123 I scintigraphy of nude mice revealed significantly reduced levels of hepatic transgene expression after intravenous injection of dendrimer-coated Ad5-CMV/NIS (dcAd5-CMV/NIS). Evasion from liver accumulation resulted in significantly reduced liver toxicity and increased transduction efficiency of dcAd5-CMV/NIS in hepatoma xenografts. After PAMAM-G5 coating of the replication-selective Ad5-E1/AFP-E3/NIS, a significantly enhanced oncolytic effect was observed after intravenous application (virotherapy) that was further increased by additional treatment with a therapeutic dose of 131 I (radiovirotherapy) and was associated with markedly improved survival. Conclusion: These results demonstrate efficient liver detargeting and tumor retargeting of adenoviral vectors after coating with synthetic dendrimers, thereby representing a promising innovative strategy for systemic NIS gene therapy. Moreover, our study-based on the function of NIS as a theranostic gene allowing the noninvasive imaging of NIS expression by 123 I scintigraphy-provides detailed characterization of in vivo vector biodistribution and localization, level, and duration of transgene expression, essential prerequisites for exact planning and monitoring of clinical gene therapy trials that aim to individualize the NIS gene therapy concept.
We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy.
In this study, we determined the in vitro and in vivo efficacy of sodium iodide symporter (NIS) gene transfer and the therapeutic potential of oncolytic virotherapy combined with radioiodine therapy using a conditionally replicating oncolytic adenovirus. For this purpose, we used a replication-selective adenovirus in which the E1a gene is driven by the mouse alpha-fetoprotein (AFP) promoter and the human NIS gene is inserted in the E3 region (Ad5-E1/AFP-E3/NIS). Human hepatocellular carcinoma cells (HuH7) infected with Ad5-E1/AFP-E3/NIS concentrated radioiodine at a level that was sufficiently high for a therapeutic effect in vitro. In vivo experiments demonstrated that 3 days after intratumoral (i.t.) injection of Ad5-E1/AFP-E3/NIS HuH7 xenograft tumors accumulated approximately 25% ID g(-1) (percentage of the injected dose per gram tumor tissue) (123)I as shown by (123)I gamma camera imaging. A single i.t. injection of Ad5-E1/AFP-E3/NIS (virotherapy) resulted in a significant reduction of tumor growth and prolonged survival, as compared with injection of saline. Combination of oncolytic virotherapy with radioiodine treatment (radiovirotherapy) led to an additional reduction of tumor growth that resulted in markedly improved survival as compared with virotherapy alone. In conclusion, local in vivo NIS gene transfer using a replication-selective oncolytic adenovirus is able to induce a significant therapeutic effect, which can be enhanced by additional (131)I application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.