In the adult brain, neuroblasts born in the subventricular zone migrate from the walls of the lateral ventricles to the olfactory bulb. How do these cells orient over such a long distance and through complex territories? Here we show that neuroblast migration parallels cerebrospinal fluid (CSF) flow. Beating of ependymal cilia is required for normal CSF flow, concentration gradient formation of CSF guidance molecules, and directional migration of neuroblasts. Results suggest that polarized epithelial cells contribute important vectorial information for guidance of young, migrating neurons.
In mammals, motile cilia cover many organs, such as fallopian tubes, respiratory tracts and brain ventricles. The development and function of these organs critically depend on efficient directional fluid flow ensured by the alignment of ciliary beating. To identify the mechanisms involved in this process, we analysed motile cilia of mouse brain ventricles, using biophysical and molecular approaches. Our results highlight an original orientation mechanism for ependymal cilia whereby basal bodies first dock apically with random orientations, and then reorient in a common direction through a coupling between hydrodynamic forces and the planar cell polarity (PCP) protein Vangl2, within a limited time-frame. This identifies a direct link between external hydrodynamic cues and intracellular PCP signalling. Our findings extend known PCP mechanisms by integrating hydrodynamic forces as long-range polarity signals, argue for a possible sensory role of ependymal cilia, and will be of interest for the study of fluid flow-mediated morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.