Tie1 is a mechanistically poorly characterized endothelial cell (EC)-specific orphan receptor. Yet, Tie1 deletion is embryonic lethal and Tie1 has been implicated in critical vascular pathologies, including atherosclerosis and tumor angiogenesis. Here, we show that Tie1 does not function independently but exerts context-dependent effects on the related receptor Tie2. Tie1 was identified as an EC activation marker that is expressed during angiogenesis by a subset of angiogenic tip and remodeling stalk cells and downregulated in the adult quiescent vasculature. Functionally, Tie1 expression by angiogenic EC contributes to shaping the tip cell phenotype by negatively regulating Tie2 surface presentation. In contrast, Tie1 acts in remodeling stalk cells cooperatively to sustain Tie2 signaling. Collectively, our data support an interactive model of Tie1 and Tie2 function, in which dynamically regulated Tie1 versus Tie2 expression determines the net positive or negative effect of Tie1 on Tie2 signaling.
The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific deletion thereof reduces both neurovascular complexity and synaptic activity in the brain. CD95L-induced neuronal and vascular growth is mediated through src-family kinase (SFK) and PI3K signaling. Together, our study highlights a coordinated neurovascular development instructed by CNS macrophage-derived CD95L, and it underlines the importance of macrophages for the establishment of the neurovascular network during CNS development.
Transmission of malaria-causing parasites to and by the mosquito rely on active parasite migration and constitute bottlenecks in the Plasmodium life cycle. Parasite adaption to the biochemically and physically different environments must hence be a key evolutionary driver for transmission efficiency. To probe how subtle but physiologically relevant changes in environmental elasticity impact parasite migration, we introduce 2D and 3D polyacrylamide gels to study ookinetes, the parasite forms emigrating from the mosquito blood meal and sporozoites, the forms transmitted to the vertebrate host. We show that ookinetes adapt their migratory path but not their speed to environmental elasticity and are motile for over 24 hours on soft substrates. In contrast, sporozoites evolved more short-lived rapid gliding motility for rapidly crossing the skin. Strikingly, sporozoites are highly sensitive to substrate elasticity possibly to avoid adhesion on soft endothelial cells on their long way to the liver. Hence the two migratory stages of Plasmodium evolved different strategies to overcome the physical challenges posed by the respective environments and barriers they encounter.HighlightsPlasmodium ookinetes can move for over 24 hours on very soft substrates mimicking the blood mealPlasmodium ookinetes change their migration path according to substrate stiffnessPlasmodium sporozoites are highly sensitive to subtle changes in substrate elasticitySporozoite may have evolved to not attach to the soft endothelium to help reach the liver
Transmission of malaria‐causing parasites to and by the mosquito relies on active parasite migration and constitutes bottlenecks in the Plasmodium life cycle. Parasite adaption to the biochemically and physically different environments must hence be a key evolutionary driver for transmission efficiency. To probe how subtle but physiologically relevant changes in environmental elasticity impact parasite migration, we introduce 2D and 3D polyacrylamide gels to study ookinetes, the parasite forms emigrating from the mosquito blood meal and sporozoites, the forms transmitted to the vertebrate host. We show that ookinetes adapt their migratory path but not their speed to environmental elasticity and are motile for over 24 h on soft substrates. In contrast, sporozoites evolved more short‐lived rapid gliding motility for rapidly crossing the skin. Strikingly, sporozoites are highly sensitive to substrate elasticity possibly to avoid adhesion to soft endothelial cells on their long way to the liver. Hence, the two migratory stages of Plasmodium evolved different strategies to overcome the physical challenges posed by the respective environments and barriers they encounter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.