The potent vasoconstrictor endothelin is a 21 amino acid peptide whose principal physiological function is to regulate vascular tone. The generation of endothelin is crucially dependent on the local presence and activity of endothelin converting enzyme-1 (ECE-1) expressed on the surface of vascular endothelial cells. In this study, we have shown in endothelial cells that the enzyme is phosphorylated, and that phosphorylation is increased by phorbol ester stimulation of protein kinase C (PKC). Furthermore, by monitoring specific ECE-1 activity on the surface of live cells, we also show that following PKC activation, enzyme activity is significantly increased at the cell surface, where it is positioned to catalyse the generation of active endothelin. We believe this novel finding is unprecedented for a peptide processing enzyme. Indeed, this new knowledge regarding the control of endothelin production by regulating ECE-1 activity at the cell surface opens up a new area of endothelin biology and will provide novel insights into the physiology and pathophysiology of endothelin and endothelin-associated diseases. In addition, the information generated in these studies may provide valuable new insights into potential extraand intracellular targets for the pharmacological and perhaps even therapeutic regulation of endothelin production and thus vascular tone.
The possibility exists that directed differentiation of mouse embryonic stem (mES) cells is capable of yielding enriched populations of dopaminergic neurons, but at present there is little understanding of the pharmacological properties of these cells; or whether such cells represent a pharmacologically, phenotypically similar population. In this study we used a simple culture protocol to generate dopaminergic neurons and offer a preliminary pharmacological investigation of these cells using Ca2+ imaging and [3H]-dopamine release studies. In fluo-4 AM loaded cells, 13-17 days postplating, and after the addition of tetrodotoxin some of the population of mouse embryonic stem cell-derived neurons responded to adenosine triphosphate (ATP), noradrenaline (NA), acetylcholine (ACh) and L-glutamate (L-glut) with elevations of Ca2+ influx. Within the microtubule-associated protein and tyrosine hydroxylase (TH)-positive cell population adenosine triphosphate, noradrenaline, acetylcholine and L-glutamate elicited positive elevations of Ca2+ in 74, 66, 58 and 67% of the population; cells could be further subdivided into three major pharmacologically distinct populations based on the combinations of agonist they responded to. Acetylcholine (30 microM) and noradrenaline (30 microM) were the only agonists to elicit significant tritium overflow from [3H]-dopamine loaded cells. The acetylcholine effect was blocked by atropine (1 microM) and tetrodotoxin (1 microM) and elevated by haloperidol (100 nM). The noradrenaline effects were reduced by cocaine (10 microM), but not by tetrodotoxin (100 nM). These data indicate that the dopaminergic neurons derived from mouse embryonic stem cells represent a heterogeneous population possessing combinations of purinergic, adrenergic, cholinergic and glutamatergic receptors located on the cell soma.
The use of specific quenched fluorescent substrates (QFS) provides a rapid and sensitive method to measure peptidase activity, and is readily adaptable to high-throughput screening of potential peptidase inhibitors. In this chapter, we discuss general considerations for the development of QFS assays, and describe in detail an assay protocol for the mammalian metallopeptidase, endothelin-converting enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.