Tubulin is the major protein component of brain tissue. It normally undergoes a cycle of tyrosination-detyrosination on the carboxy terminus of its alpha-subunit and this results in subpopulations of tyrosinated tubulin and detyrosinated tubulin. Brain tubulin preparations also contain a third major tubulin subpopulation, composed of a non-tyrosinatable variant of tubulin that lacks a carboxy-terminal glutamyl-tyrosine group on its alpha-subunit (delta 2-tubulin). Here, the abundance of delta 2-tubulin in brain tissues, its distribution in developing rat cerebellum and in a variety of cell types have been examined and compared with that of total alpha-tubulin and of tyrosinated and detyrosinated tubulin. Delta 2-tubulin accounts for approximately 35% of brain tubulin. In rat cerebellum, delta 2-tubulin appears early during neuronal differentiation and is detected only in neuronal cells. This apparent neuronal specificity of delta 2-tubulin is confirmed by examination of its distribution in cerebellar cells in primary cultures. In such cultures, neuronal cells are brightly stained with anti-delta 2-tubulin antibody while glial cells are not. Delta 2-tubulin is apparently present in neuronal growth cones. As delta 2-tubulin, detyrosinated tubulin is enriched in neuronal cells, but in contrast with delta 2-tubulin, detyrosinated tubulin is not detectable in Purkinje cells and is apparently excluded from neuronal growth cones. In a variety of cell types such as cultured fibroblasts of primary culture of bovine adrenal cortical cells, delta 2-tubulin is confined to very stable structures such as centrosomes and primary cilia. Treatment of such cells with high doses of taxol leads to the appearance of delta 2-tubulin in microtubule bundles. Delta 2-tubulin also occurs in the paracrystalline bundles of protofilamentous tubulin formed after vinblastine treatment. Delta 2-tubulin is present in sea urchin sperm flagella and it appears in sea urchin embryo cilia during development. Thus, delta 2-tubulin is apparently a marker of very long-lived microtubules. It might represent the final stage of alpha-tubulin maturation in long-lived polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.