Paper-based cultures are an emerging platform for preparing 3D tissue-like structures. Chemical gradients can be imposed upon these cultures, generating microenvironments similar to those found in poorly vascularized tumors. There is increasing evidence that the tumor microenvironment is responsible for promoting drug resistance and increased invasiveness. Acidosis, or the acidification of the extracellular space, is particularly important in promoting these aggressive cancer phenotypes. To better understand how cells respond to acidosis there is a need for 3D culture platforms that not only model relevant disease states but also contain sensors capable of quantifying small molecules in the extracellular environment. In this work, we describe pH-sensing optodes that are capable of generating high spatial and temporal resolution maps of pH gradients in paper-based cultures. This sensor was fabricated by suspending microparticles containing pH-sensitive (fluorescein) and pH-insensitive (diphenylanthracene) dyes in a polyurethane hydrogel, which was then coated onto a transparent film. The pH-sensing films have a fast response time, are reversible, stable in long-term culture environments, have minimal photobleaching, and are not cytotoxic. These films have a pK of 7.61 ± 0.04 and are sensitive in the pH range corresponding to normal and tumorigenic tissues. With these optodes, we measured the spatiotemporal evolution of pH gradients in paper-based tumor models.
Cellular movement is essential in the formation and maintenance of healthy tissues as well as in disease progression such as tumor metastasis. In this work, we describe a paper-based Transwell assay capable of quantifying cellular invasion through an extracellular matrix. The paper-based Transwell assays generate similar datasets, with equivalent reproducibility, to commercially available Transwell assays. With different culture configurations, we quantify invasion: upon addition of an exogenous factor or in the presence of medium obtained from other cell types, in an indirect or direct co-culture format whose medium composition is dynamically changing, and in a single-zone or parallel (96-zone) format.
The health risks associated with acute and prolonged exposure to estrogen receptor (ER) modulators has led to a concerted effort to identify and prioritize potential disruptors present in the environment. ER agonists and antagonists are identified with end-point assays, quantifying changes in cellular proliferation or gene transactivation in monolayers of estrogen receptor alpha expressing (ER+) cells upon exposure. While these monolayer cultures can be prepared, dosed, and analyzed in a highly parallelized manner, they are unable to predict the potencies of ER modulators in vivo accurately. Physiologically relevant model systems that better predict tissue- or organ-level responses are needed. To address this need, we describe here a screening platform capable of quantitatively assessing ER modulators in 96 chemically isolated 3D cultures. These cultures are supported in wax-patterned paper scaffolds whose design has improved performance and throughput over previously described paper-based setups. To highlight the potential of paper-based cultures for toxicity screens, we measured the potency of known ER modulators with a luciferase-based reporter assay. We also quantified the proliferation and invasion of two ER+ cell lines in the presence of estradiol. Despite the inability of the current setup to better predict in vivo potencies of ER modulators than monolayer cultures, the results demonstrate the potential of this platform to support increasingly complex and physiologically relevant tissue-like structures for environmental chemical risk assessment.
Cellular invasion is the gateway to metastasis, which is the leading cause of cancer-related deaths. Invasion is driven by a number of chemical and mechanical stresses that arise in the tumor microenvironment. In vitro assays are needed for the systematic study of cancer progress. To be truly predictive, these assays must generate tissue-like environments that can be experimentally controlled and manipulated. While two-dimensional (2D) monolayer cultures are easily assembled and evaluated, they lack the extracellular components needed to assess invasion. Three-dimensional (3D) cultures are better suited for invasion studies because they generate cellular phenotypes that are more representative of those found in vivo. This feature article provides an overview of four invasion platforms. We focus on paper-based cultures, an emerging 3D culture platform capable of generating tissue-like structures and quantifying cellular invasion. Paper-based cultures are as easily assembled and analyzed as monolayers, but provide an experimentally powerful platform capable of supporting: co-cultures and representative extracellular environments; experimentally controlled gradients; readouts capable of quantifying, discerning, and separating cells based on their invasiveness. With a series of examples we highlight the potential of paper-based cultures, and discuss how they stack up against other invasion platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.