The instability and subsequent atomization of a viscous liquid jet emanated into a high-pressure gaseous surrounding is studied both computationally and experimentally. Liquid water issued into nitrogen gas at elevated pressures is used to simulate the flow conditions in a coaxial shear injector element relevant to liquid propellant rocket engines. The theoretical analysis is based on a simplified mathematical formulation of the continuity and momentum equations in their conservative form. Numerical solutions of the governing equations subject to appropriate initial and boundary conditions are obtained via a robust finite difference scheme. The computations yield real-time evolution and subsequent breakup characteristics of the liquid jet. The experimental investigation utilizes a digital imaging technique to measure resultant drop sizes. Data were collected for liquid Reynolds number between 2,500 and 25,000, aerodynamic Weber number range of 50-500 and ambient gas pressures from 150 to 1200 psia. Comparison of the model predictions and experimental data for drop sizes at gas pressures of 150 and 300 psia reveal satisfactory agreement particularly for lower values of investigated Weber number. The present model is intended as a component of a practical tool to facilitate design and optimization of coaxial shear atomizers.
The instability and subsequent atomization of a viscous liquid jet emanated into a highpressure gaseous surrounding is studied both computationally and experimentally. Liquid water issued into nitrogen gas at elevated pressures is used to simulate the flow conditions in a coaxial shear injector element relevant to liquid propellant rocket engines. The theoretical analysis is based on a simplified mathematical formulation of the continuity and momentum equations in their conservative form. Numerical solutions of the governing equations subject to appropriate initial and boundary conditions are obtained via a robust finite difference scheme. The computations yield real-time evolution and subsequent breakup characteristics of the liquid jet. The experimental investigation utilizes a digital imaging technique to measure resultant drop sizes. Data were collected for liquid Reynolds number between 2,500 and 25,000, aerodynamic Weber number range of 50-500 and ambient gas pressures from 150 to 1200 psia. Comparison of the model predictions and experimental data for drop sizes at gas pressures of 150 and 300 psia reveal satisfactory agreement particularly for lower values of investigated Weber number. The present model is intended as a component of a practical tool to facilitate design and optimization of coaxial shear atomizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.