The production of recombinant proteins for biotherapeutic use is a multibillion dollar industry, which has seen continual growth in recent years. In order to produce the best protein with minimal cost and time, selection methods are utilized during the cell line development process in order to select for the most desirable clonal cell line from a heterogeneous transfectant pool. Today, there is a vast array of potential selection methods available, which vary in cost, complexity and efficacy. This review aims to highlight cell line selection methods that exist for the isolation of high-producing clones, and also reviews techniques that can be used to predict, at a small scale, the performance of clones at large, industrially-relevant scales.
Bile acids are critical for the digestion and absorption of lipids and fat-soluble vitamins; however, evidence continues to emerge supporting additional roles for bile acids as signaling molecules. After they are synthesized from cholesterol in the liver, primary bile acids are modified into secondary bile acids by gut flora contributing to a diverse pool and making the composition of bile acids highly sensitive to alterations in gut microbiota. Disturbances in bile acid homeostasis have been observed in patients with Inflammatory Bowel Diseases (IBD). In fact, a decrease in secondary bile acids was shown to occur because of IBD-associated dysbiosis. Further, the increase in luminal bile acids due to malabsorption in Crohn’s ileitis and ileal resection has been implicated in the induction of diarrhea and the exacerbation of inflammation. A causal link between bile acid signaling and intestinal inflammation has been recently suggested. With respect to potential mechanisms related to bile acids and IBD, several studies have provided strong evidence for direct effects of bile acids on intestinal permeability in porcine and rodent models as well as in humans. Interestingly, different bile acids were shown to exert distinct effects on the inflammatory response and intestinal permeability that require careful consideration. Such findings revealed a potential effect for changes in the relative abundance of different bile acids on the induction of inflammation by bile acids and the development of IBD. This review summarizes current knowledge about the roles for bile acids as inflammatory mediators and modulators of intestinal permeability mainly in the context of inflammatory bowel diseases.
Niemann-Pick C1 Like-1 (NPC1L1) mediates the uptake of micellar cholesterol by intestinal epithelial cells and is the molecular target of the cholesterol-lowering drug ezetimibe (EZE). The detailed mechanisms responsible for intracellular shuttling of micellar cholesterol is not fully understood due to the lack of a suitable NPC1L1-substrate that can be traced by fluorescence imaging and biochemical methods. 27-alkyne cholesterol has been previously shown to serve as a substrate for different cellular processes similar to native cholesterol. However, it is not known whether alkyne cholesterol is absorbed via an NPC1L1-dependent pathway. We aimed to determine whether alkyne cholesterol is a substrate for NPC1L1 in intestinal cells. Human intestinal epithelial Caco2 cells were incubated with micelles containing alkyne cholesterol in the presence or absence of EZE. Small intestinal closed loops in C57BL/6J mice were injected with micelles containing alkyne cholesterol with or without EZE. Alkyne cholesterol esterification in Caco2 cells was significantly inhibited by EZE and by inhibitor of clathrin-mediated endocytosis Pitstop 2. The esterification was similarly reduced by inhibitors of the acyl-CoA cholesterol acyltransferase (ACAT). Alkyne cholesterol efficiently labelled the apical membrane of Caco2 cells and the amount retained on the membrane was significantly increased by EZE as judged by accessibility to exogenous cholesterol oxidase. In mouse small intestine, the presence of EZE reduced total alkyne cholesterol uptake by ~75%. These data show that alkyne cholesterol acts as a substrate for NPC1L1 and may serve as a non-radioactive tracer to measure cholesterol absorption in both in vitro and in vivo models.
Inflammatory bowel diseases (IBD) involve complex interactions among genetic factors, aberrant immune activation, and gut microbial dysbiosis. While metabolomic studies have focused on feces and serum, fewer investigations have examined the intestinal mucosa despite its crucial role in metabolite absorption and transport. The goals of this study were twofold: to test the hypothesis that gut microbial dysbiosis from chronic intestinal inflammation leads to mucosal metabolic alterations suitable for therapeutic targeting, and to address gaps in metabolomic studies of intestinal inflammation that have overlooked the mucosal metabolome. The chronic DSS colitis was induced for five weeks in 7–9-week-old wild-type C57BL/6J male mice followed by microbial profiling with targeted 16srRNA sequencing service. Mucosal metabolite measurements were performed by Metabolon (Morrisville, NC). The data were analyzed using the bioinformatic tools Pathview, MetOrigin, and Metaboanalyst. The novel findings demonstrated increases in several host- and microbe-derived purine, pyrimidine, endocannabinoid, and ceramide metabolites in colitis. Origin analysis revealed that microbial-related tryptophan metabolites kynurenine, anthranilate, 5-hydroxyindoleacetate, and C-glycosyltryptophan were significantly increased in colon mucosa during chronic inflammation and strongly correlated with disease activity. These findings offer new insights into the pathophysiology of IBD and provide novel potential targets for microbial-based therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.