[1] The continental margin of southeast Brazil is elevated. Onshore Tertiary basins and Late Cretaceous/Paleogene intrusions are good evidence for post breakup tectono-magmatic activity. To constrain the impact of post-rift reactivation on the geological history of the area, we carried out a new thermochronological study. Apatite fission track ages range from 60.7 AE 1.9 Ma to 129.3 AE 4.3 Ma, mean track lengths from 11.41 AE 0.23 mm to 14.31 AE 0.24 mm and a subset of the (U-Th)/He ages range from 45.1 AE 1.5 to 122.4 AE 2.5 Ma. Results of inverse thermal history modeling generally support the conclusions from an earlier study for a Late Cretaceous phase of cooling. Around the onshore Taubaté Basin, for a limited number of samples, the first detectable period of cooling occurred during the Early Tertiary. The inferred thermal histories for many samples also imply subsequent reheating followed by Neogene cooling. Given the uncertainty of the inversion results, we did deterministic forward modeling to assess the range of possibilities of this Tertiary part of the thermal history. The evidence for reheating seems to be robust around the Taubaté Basin, but elsewhere the data cannot discriminate between this and a less complex thermal history. However, forward modeling results and geological information support the conclusion that the whole area underwent cooling during the Neogene. The synchronicity of the cooling phases with Andean tectonics and those in NE Brazil leads us to assume a plate-wide compressional stress that reactivated inherited structures. The present-day topographic relief of the margin reflects a contribution from post-breakup reactivation and uplift.Citation: Cogné, N., K. Gallagher, P. R. Cobbold, C. Riccomini, and C. Gautheron (2012), Post-breakup tectonics in southeast Brazil from thermochronological data and combined inverse-forward thermal history modeling,
[1] The Ronda peridotite supplies one of the best objects to document subcontinental mantle deformation, but its internal deformation and exhumation mechanisms remain controversial. Here we provide new structural data and numerical results that constrain the Oligocene-Miocene deformation history of the Ronda massif. We first describe a mantle shear zone in the northern massif that developed subcrustal strain localization during decompression and related partial melting. The deformation regime of this mantle shear zone evolved from penetrative NE-SW stretching to sinistral shear highlighted by discrete shear bands. We then show structural observations that document a viscous deformation in the southern massif occurring prior to the thrust-assisted emplacement of the peridotite during large decompression. Finally, we performed numerical investigations that quantify a high temperature of 980°C for the basal peridotite lens at the time of its crustal emplacement. Our numerical results constrain the timing of ductile deformation of the peridotite just before 22 Ma, probably between 30 and 22 Ma. Altogether, these features led us to conclude that the deformation and exhumation of the Ronda peridotite results from lithosphere thinning subsequently inverted in the course of the Oligocene-Miocene. Among available models, our findings support the hypothesis of peridotite exhumation by the inversion of a thinned back-arc continental lithosphere during westward slab rollback through the Alboran region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.