We show that substrates with nonzero Gaussian curvature influence the organization of stress fibers and direct the migration of cells. To study the role of Gaussian curvature, we developed a sphere-with-skirt surface in which a positive Gaussian curvature spherical cap is seamlessly surrounded by a negative Gaussian curvature draping skirt, both with principal radii similar to cell-length scales. We find significant reconfiguration of two subpopulations of stress fibers when fibroblasts are exposed to these curvatures. Apical stress fibers in cells on skirts align in the radial direction and avoid bending by forming chords across the concave gap, whereas basal stress fibers bend along the convex direction. Cell migration is also strongly influenced by the Gaussian curvature. Real-time imaging shows that cells migrating on skirts repolarize to establish a leading edge in the azimuthal direction. Thereafter, they migrate in that direction. This behavior is notably different from migration on planar surfaces, in which cells typically migrate in the same direction as the apical stress fiber orientation. Thus, this platform reveals that nonzero Gaussian curvature not only affects the positioning of cells and alignment of stress fiber subpopulations but also directs migration in a manner fundamentally distinct from that of migration on planar surfaces.
Stress fibers, single cells, and densely packed cells align on gently curved surfaces and restructure upon Rho activation.
The extracellular matrix (ECM) is a major component of the biomechanical environment with which cells interact, and it plays important roles in both normal development and disease progression. Mechanical and biochemical factors alter the biomechanical properties of tissues by driving cellular remodeling of the ECM. This review provides an overview of the structural, compositional, and mechanical properties of the ECM that instruct cell behaviors. Case studies are reviewed that highlight mechanotransduction in the context of two distinct tissues: tendons and the heart. Although these two tissues demonstrate differences in relative cell–ECM composition and mechanical environment, they share similar mechanisms underlying ECM dysfunction and cell mechanotransduction. Together, these topics provide a framework for a fundamental understanding of the ECM and how it may vary across normal and diseased tissues in response to mechanical and biochemical cues. This article is part of a Special Issue entitled: Mechanobiology.
Confined smectic A liquid crystals (SmA LCs) form topological defects called focal conic domains (FCDs) [1] that focus light as gradient-index lenses [2][3][4][5]. Here, we exploit surface curvature to self-assemble FCDs in a single step into a hierarchical structure [6,7] (coined "flower pattern") molded by the fluid interface that is pinned at the top of a micropillar. The structure resembles the compound eyes of some invertebrates, which consist of hundreds of microlenses on a curved interface, able to focus and construct images in three dimensions (3D) [8]. Here we demonstrate that these flowers are indeed "compound eyes" with important features which have not been demonstrated previously in the literature. The eccentric FCDs gradually change in size with radial distance from the edge of the micropillar, resulting in a variable microlens focal length that ranges from a few microns to a few tens of microns within a single "flower". We show that the microlenses can construct a composite 3D image from different depth of field (DOF). Moreover, the smectic "'compound eye" can be reconfigured by heating and cooling at the LC phase transition temperature; its field of view (FOV) can be manipulated by tuning the curvature of the LC interface, and the lenses are sensitive to light polarization.Insects' eyes are comprised of hundreds of microlenses (ommatidia) arranged on a curved surface [8]. Despite having modest resolution in comparison to single aperture lenses (like the human eyes), the compound eye offers attractive optical properties, including exceptionally wide FOV, fast motion detection, and polarization sensitivity. Artifical compound eyes have been created with angular sensitivity [9] and with a hemispheric FOV and near infinite DOF [10]. Typically, multiple top-down fabrication steps are required, including photolithography, replica molding, or complex micromachining processes [9][10][11]. For practical applications with wide FOV, lenses which self-align are highly desirable. * These authors contributed equally to the work † kstebe@seas.
The vast majority of cell biological studies examine function and molecular mechanisms using cells on flat surfaces: glass, plastic and more recently elastomeric polymers. While these studies have provided a wealth of valuable insight, they fail to consider that most biologically occurring surfaces are curved, with a radius of curvature roughly corresponding to the length scale of cells themselves. Here, we review recent studies showing that cells detect and respond to these curvature cues by adjusting and re-orienting their cell bodies, actin fibres and nuclei as well as by changing their transcriptional programme. Modelling substratum curvature has the potential to provide fundamental new insight into cell behaviour and function in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.