The transition of RNA polymerase II (Pol II) from initiation to productive elongation is a central, regulated step in metazoan gene expression. At many genes, Pol II pauses stably in early elongation, remaining engaged with the 25-to 60-nt-long nascent RNA for many minutes while awaiting signals for release into the gene body. However, 15%-20% of genes display highly unstable promoter Pol II, suggesting that paused polymerase might dissociate from template DNA at these promoters and release a short, non-productive mRNA. Here, we report that paused Pol II can be actively destabilized by the Integrator complex. Specifically, we present evidence that Integrator utilizes its RNA endonuclease activity to cleave nascent RNA and drive termination of paused Pol II. These findings uncover a previously unappreciated mechanism of metazoan gene repression, akin to bacterial transcription attenuation, wherein promoter-proximal Pol II is prevented from entering productive elongation through factor-regulated termination.
Highlights− The first atlas of human 3'QTLs: ~0.4 million genetic variants associated with alternative polyadenylation of target genes across 46 tissues from 467 individuals − 3'QTLs could alter polyA motifs and RNA-binding protein binding sites − 3'QTLs can be used to interpret ~16.1% of trait-associated variants − Many disease-associated 3'QTLs contribute to phenotype independent of gene expression .
Cellular homeostasis requires transcriptional outputs to be coordinated, and many events post-transcription initiation can dictate the levels and functions of mature transcripts. To systematically identify regulators of inducible gene expression, we performed high-throughput RNAi screening of the Drosophila Metallothionein A (MtnA) promoter. This revealed that the Integrator complex, which has a well-established role in 3 ′ end processing of small nuclear RNAs (snRNAs), attenuates MtnA transcription during copper stress. Integrator complex subunit 11 (IntS11) endonucleolytically cleaves MtnA transcripts, resulting in premature transcription termination and degradation of the nascent RNAs by the RNA exosome, a complex also identified in the screen. Using RNA-seq, we then identified >400 additional Drosophila protein-coding genes whose expression increases upon Integrator depletion. We focused on a subset of these genes and confirmed that Integrator is bound to their 5 ′ ends and negatively regulates their transcription via IntS11 endonuclease activity. Many noncatalytic Integrator subunits, which are largely dispensable for snRNA processing, also have regulatory roles at these protein-coding genes, possibly by controlling Integrator recruitment or RNA polymerase II dynamics. Altogether, our results suggest that attenuation via Integrator cleavage limits production of many full-length mRNAs, allowing precise control of transcription outputs.
Highlights d A short motif in IntS8 mediates association with protein phosphatase 2A (PP2A) d Recruitment of PP2A is necessary for Integrator-mediated gene repression d Integrator-bound PP2A dephosphorylates residues within the RNA Pol II CTD and Spt5
Alternative polyadenylation (APA) has emerged as a prevalent feature associated with cancer development and progression. The advantage of APA to tumor progression is to induce oncogenes through 3′-UTR shortening, and to inactivate tumor suppressor genes via the re-routing of microRNA competition. We previously identified the Mammalian Cleavage Factor I-25 (CFIm25) (encoded by Nudt21 gene) as a master APA regulator whose expression levels directly impact the tumorigenicity of glioblastoma (GBM) in vitro and in vivo. Despite its importance, the role of Nudt21 in GBM development is not known and the genes subject to Nudt21 APA regulation that contribute to GBM progression have not been identified. Here, we find that Nudt21 is reduced in low grade glioma (LGG) and all four subtypes of high grade glioma (GBM). Reduced expression of Nudt21 associates with worse survival in TCGA LGG cohorts and two TCGA GBM cohorts. Moreover, although CFIm25 was initially identified as biochemically associated with both CFIm59 and CFIm68, we observed three CFIm distinct subcomplexes exist and CFIm59 protein level is dependent on Nudt21 expression in GBM cells, but CFIm68 is not, and that only CFIm59 predicts prognosis of GBM patients similar to Nudt21. Through the use of Poly(A)-Click-Seq to characterize APA, we define the mRNAs subject to 3′-UTR shortening upon Nudt21 depletion in GBM cells and observed enrichment in genes important in the Ras signaling pathway, including Pak1. Remarkably, we find that Pak1 expression is regulated by Nudt21 through its 3′-UTR APA, and the combination of Pak1 and Nudt21 expression generates an even stronger prognostic indicator of GBM survival versus either value used alone. Collectively, our data uncover Nudt21 and its downstream target Pak1 as a potential “combination biomarker” for predicting prognosis of GBM patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.