It has been shown in animals that neuronal activity in the 'gamma band' (>30 Hz) is associated with cortical activation and may play a role in multi-regional and multi-modal integration of cortical processing. Studies of gamma activity in human scalp EEG have typically focused on event-related synchronization (ERS) in the 40 Hz band. To assess further the gamma band ERS further, as an index of cortical activation and as a tool for human functional brain mapping, we recorded subdural electrocorticographic (ECoG) signals in five clinical subjects while they performed visual-motor decision tasks designed to activate the representations of different body parts in sensorimotor cortex. ECoG spectral analysis utilized a mixed-effects analysis of variance model in which within-trial temporal dependencies were accounted for. Taking an exploratory approach, we studied gamma ERS in 10-Hz-wide bands (overlapping by 5 Hz) ranging from 30 to 100 Hz, and compared these findings with changes in the alpha (8-13 Hz) and beta (15-25 Hz) bands. Gamma ERS (observed in three out of subjects) occurred in two broad bands-'low gamma' included the 35-45 and 40-50 Hz bands, and 'high gamma' the 75-85, 80-90, 85-95 and 90-100 Hz bands. The temporal and spatial characteristics of low and high gamma ERS were distinct, suggesting relatively independent neurophysiological mechanisms. Low gamma ERS often began after onset of the motor response and was sustained through much of it, in parallel with event-related desynchronization (ERD) in the alpha band. High gamma ERS often began during, or slightly before, the motor response and was transient, ending well before completion of the motor response. These temporal differences in low and high gamma suggest different functional associations with motor performance. Compared with alpha and beta ERD, the topographical patterns of low and high gamma ERS were more discrete and somatotopically specific and only occurred over contralateral sensorimotor cortex during unilateral limb movements (alpha and beta ERD were also observed ipsilaterally). Maps of sensorimotor function inferred from gamma ERS were consistent with maps generated by cortical electrical stimulation for clinical purposes. In addition, different task conditions in one subject produced consistent differences in both motor response latencies and onset latency of gamma ERS, particularly high gamma ERS. Compared with alpha and beta ERD, the topography of gamma ERS is more consistent with traditional maps of sensorimotor functional anatomy. In addition, gamma ERS may provide complementary information about cortical neurophysiology that is useful for mapping brain function in humans.
Recent studies using electrocorticographic (ECoG) recordings in humans have shown that functional activation of cortex is associated with an increase in power in the high-gamma frequency range (ϳ60 -200 Hz). Here we investigate the neural correlates of this highgamma activity in local field potential (LFP). Single units and LFP were recorded with microelectrodes from the hand region of macaque secondary somatosensory cortex while vibrotactile stimuli of varying intensities were presented to the hand. We found that high-gamma power in the LFP was strongly correlated with the average firing rate recorded by the microelectrodes, both temporally and on a trial-by-trial basis. In comparison, the correlation between firing rate and low-gamma power (40 -80 Hz) was much smaller. To explore the potential effects of neuronal firing on ECoG, we developed a model to estimate ECoG power generated by different firing patterns of the underlying cortical population and studied how ECoG power varies with changes in firing rate versus the degree of synchronous firing between neurons in the population. Both an increase in firing rate and neuronal synchrony increased high-gamma power in the simulated ECoG data. However, ECoG high-gamma activity was much more sensitive to increases in neuronal synchrony than firing rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.