Consolidation of pure molybdenum through laser powder bed fusion and other additive manufacturing techniques is complicated by a high melting temperature, thermal conductivity and ductile-to-brittle transition temperature. Nano-sized SiC particles (0.1 wt%) were homogeneously mixed with molybdenum powder and the printing characteristics, chemical composition, microstructure, mechanical properties were compared to pure molybdenum for scan speeds of 100, 200, 400, and 800 mm/s. The addition of SiC improved the optically determined density and flexural strength at 400 mm/s by 92% and 80%, respectively. The oxygen content was reduced by an average of 52% over the four scan speeds analyzed. Two mechanisms of oxygen reduction were identified as responsible for the improvements: oxidation of free carbon and the creation of secondary phase nanoparticles. This study illustrates the promising influence of nanoparticle additions to refractory metals in laser powder bed fusion.
Positron annihilation lifetime spectroscopy (PALS) has been used for the first time to investigate the microstructure of additively manufactured molybdenum. Despite the wide applicability of positron annihilation spectroscopy techniques to the defect analysis of metals, they have only been used sparingly to monitor the microstructural evolution of additively manufactured metals. Molybdenum and molybdenum with a dilute addition (0.1 wt%) of nano-sized silicon carbide, prepared via laser powder bed fusion (LPBF) at four different scan speeds: 100, 200, 400, and 800 mm/s, were studied by PALS and compared with electron backscatter diffraction analysis. The aim of this study was to clarify the extent to which PALS can be used to identify microstructural changes resulting from varying LPBF process parameters. Grain sizes and misorientation results do not correlate with positron lifetimes indicating the positrons are sampling regions within the grains. Positron annihilation spectroscopy identified the presence of dislocations and nano-voids not revealed through electron microscopy techniques and correlated with the findings of SiO2 nanoparticles in the samples prepared with silicon carbide. The comparison of results indicates the usefulness of positron techniques to characterize nano-structure in additively manufactured metals due to the significant increase in atomic-level information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.