The high sensitivity of voltage-gated ion channels to changes in membrane potential implies that the process of channel opening is accompanied by large charge movements. Previous estimates of the total charge displacement, q, have been deduced from the voltage dependence of channel activation and have ranged from 4 to 8 elementary charges (e0). A more direct measurement of q in Drosophila melanogaster Shaker 29-4 potassium channels yields a q value of 12.3 e0. A similar q value is obtained from mutated Shaker channels having reduced voltage sensitivity. These results can be explained by a model for channel activation in which the equilibria of voltage-dependent steps are altered in the mutant channels.
At many central excitatory synapses, AMPA receptors relay the electrical signal, whereas activation of NMDA receptors is conditional and serves a modulatory function. We show here quite a different role for NMDA receptors at dendrodendritic synapses between mitral and granule cells in the rat olfactory bulb. In whole-cell patch-clamp recordings in bulb slices, stimulation of mitral cells elicited slowly decaying, GABA A receptor-mediated reciprocal IPSCs that reflected prolonged GABA release from granule cells. Although granule cells had a normal complement of AMPA and NMDA receptors, the IPSC was completely blocked by the NMDA receptor antagonist D,L-AP-5, suggesting that NMDA receptor activation is an absolute requirement for dendrodendritic inhibition. The AMPA receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxobenzo[f]quinoxaline-7-sulfonamide (NBQX) had no effect on IPSCs in the absence of extracellular magnesium but modestly reduced IPSCs in 1 mM magnesium, indicating that the primary effect of the AMPA receptor-mediated depolarization was to facilitate the unblocking of NMDA receptors. Granule cell voltage recordings indicated that effective spike stimulation in granule cells depended on the slow NMDA receptor kinetics. Granule cells also showed a pronounced delay between synaptic stimulation and action potential generation, suggesting that their intrinsic membrane properties underlie the ineffectiveness of brief AMPA receptor-mediated EPSPs. NMDA receptors also seem to have a central role in dendrodendritic inhibition in vivo, because intraperitoneal dizocilpine maleate (MK-801) injection in young adult rats resulted in disinhibition of mitral cells as measured by the generation of c-fos mRNA. The unique dependence of dendrodendritic inhibition on slow EPSPs generated by NMDA receptors suggests that olfactory information processing depends on long-lasting reciprocal and lateral inhibition.
Within the olfactory system, information flow from the periphery onto output mitral cells (MCs) of the olfactory bulb (OB) has been thought to be mediated by direct synaptic inputs from olfactory sensory neurons (OSNs). Here, we performed patch-clamp measurements in rat and mouse OB slices to investigate mechanisms of OSN signaling onto MCs, including the assumption of a direct path, using electrical and optogenetic stimulation methods that selectively activated OSNs. We found that MCs are in fact not typically activated by direct OSN inputs and instead require a multistep, diffuse mechanism involving another glutamatergic cell-type, the tufted cells. The preference for a multi-step mechanism reflects the fact that signals arising from direct OSN inputs are drastically shunted by connexin 36-mediated gap junctions on MCs, but not tufted cells. An OB circuit with tufted cells intermediate between OSNs and MCs suggests that considerable processing of olfactory information occurs prior to it reaching MCs.
Odor elicits a well-organized pattern of glomerular activation in the olfactory bulb. However, the mechanisms by which this spatial map is transformed into an odor code remain unclear. We examined this question in rat olfactory bulb slices in recordings from output mitral cells. Electrical stimulation of incoming afferents elicited slow ( approximately 2 Hz) oscillations that originated in glomeruli and were highly synchronized for mitral cells projecting to the same glomerulus. Cyclical depolarizations were generated by glutamate activation of dendritic autoreceptors, while the slow frequency was determined primarily by the duration of regenerative glutamate release. Patterned stimuli elicited stimulus-entrained oscillations that amplified weak and variable inputs. We suggest that these oscillations maintain the fidelity of the spatial map by ensuring that all mitral cells within a glomerulus-specific network respond to odor as a functional unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.